[CF1031E]Triple Flips

题目大意:给你一个长度为$n$的$01$串,一次操作定义为:选取$3$个等距的元素,使其$0$变$1$,$1$变$0$,要求在$\Big\lfloor \dfrac n 3\Big\rfloor+12$次操作内变为全$0$。输出是否可行以及方案

题解:skip1978的博客讲的十分详细。发现给的操作次数很少,基本上一次操作要使得$3$个元素变成$0$

对于区间$[l,r]$,若$a_l=0$,这一位不用翻转,缩小到区间$[l+1,r]$,这样$a_l,a_{l+1},a_{l+2}$有$4$中可能:

  1. $1,1,1:$翻转$a_l,a_{l+1},a_{l+2}$就可以使得这三位变$0$
  2. $1,0,1:$翻转$a_l,a_{l+2},a_{l+4}$就可以使得这三位变$0$
  3. $1,0,0:$翻转$a_l,a_{l+3},a_{l+6}$就可以使得这三位变$0$
  4. $1,1,0:$可以按相同方法收缩右端点,直到右端点也出现这样的情况
    • 若$l,r$奇偶性相同,可以翻转$a_l,a_{\frac{l+r}{2}},a_r$和$a_{l+1},a_{\frac{l+r}{2}},a_{r-1}$使得这六位变成$0$
    • 若$l,r$奇偶性不同,可以翻转$a_l,a_{\frac{l+r-1}{2}},a_{r-1}$和$a_{l+1},a_{\frac{l+r+1}{2}},a_r$使得这六位变成$0$

然后发现若区间长度大于等于$8$,一定可以翻转成$0$,并且所有合法的翻转只有$12$次,可以暴力枚举每一个操作是否使用即可

卡点:找到答案后忘记退出

 

C++ Code:

#include <cstdio>
#include <vector>
#define maxn 100010

int n, s[maxn];
struct Step {
	int a, b, c;
	inline Step() {}
	inline Step(int __a, int __b, int __c) {a = __a, b = __b, c = __c;}
};
std::vector<Step> Ans;
bool find_ans = false;

inline void reverse(int a, int b, int c) {
	s[a] ^= 1, s[b] ^= 1, s[c] ^= 1;
	Ans.push_back(Step(a, b, c));
}
inline void reverse(int a, int c) {
	int b = a + c >> 1;
	reverse(a, b, c);
}

std::vector<std::pair<int, int> > V;
int tmp[maxn];
#define rev(x) tmp[x.first] ^= 1, tmp[x.first + x.second >> 1] ^= 1, tmp[x.second] ^= 1
inline bool end(int l, int r) {
	for (int i = l; i <= r; i++) if (tmp[i]) return false;
	return true;
}
void calc(int l, int r) {
	for (int i = l; i <= r - 2; i++) {
		for (int j = i + 2; j <= r; j += 2) {
			V.push_back(std::make_pair(i, j));
		}
	}
	int sz = V.size(), U = 1 << sz;
	for (int i = 0; i < U; i++) {
		for (int i = l; i <= r; i++) tmp[i] = s[i];
		for (int j = 0; j < sz; j++) if (i & 1 << j) rev(V[j]);
		if (end(l, r)) {
			find_ans = true;
			for (int j = 0; j < sz; j++) if (i & 1 << j) reverse(V[j].first, V[j].second);
			return ;
		}
	}
}

#define checkl(x, a, b, c) (s[x] == a && s[x + 1] == b && s[x + 2] == c)
#define work(l, r, L, R) {reverse(l, r), solve(L, R); return ;}
#define checkr(x, a, b, c) (s[x] == a && s[x - 1] == b && s[x - 2] == c)
void solve(int l, int r) {
	if (r - l + 1 <= 8) {
		while (r - l + 1 < 8 && l > 1) l--;
		while (r - l + 1 < 8 && r < n) r++;
		calc(l, r);
		return ;
	}
	if (!s[l]) {solve(l + 1, r); return ;}
	if (!s[r]) {solve(l, r - 1); return ;}
	if (checkl(l, 1, 1, 1)) work(l, l + 2, l + 3, r);
	if (checkl(l, 1, 0, 1)) work(l, l + 4, l + 3, r);
	if (checkl(l, 1, 0, 0)) work(l, l + 6, l + 3, r);
	if (checkr(r, 1, 1, 1)) work(r - 2, r, l, r - 3);
	if (checkr(r, 1, 0, 1)) work(r - 4, r, l, r - 3);
	if (checkr(r, 1, 0, 0)) work(r - 6, r, l, r - 3);
	if (r - l & 1) {
		reverse(l, r - 1), reverse(l + 1, r);
		solve(l + 3, r - 3);
	} else {
		reverse(l, r), reverse(l + 1, r - 1);
		solve(l + 3, r - 3);
	}
}
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) scanf("%d", s + i);
	solve(1, n);
	if (find_ans) {
		puts("YES");
		printf("%d\n", Ans.size());
		for (std::vector<Step>::iterator it = Ans.begin(); it != Ans.end(); it++) {
			printf("%d %d %d\n", it -> a, it -> b, it -> c);
		}
	} else puts("NO");
	return 0;
}

  

posted @ 2018-11-07 20:10  Memory_of_winter  阅读(418)  评论(0编辑  收藏  举报