[CF1036C]Classy Numbers

题目大意:多个询问,每个询问问$[l,r](1\leqslant l\leqslant r\leqslant10^{18})$内有多少个数满足非零数位小于等于$3$。

题解:数位$DP$,$f_{i,j}$表示在第$i$位,有$j$个数位不是$0$的方案数

卡点:

 

C++ Code:

#include <cstdio>
#include <cstring>
int Tim, num[20];
long long M[5][20];
long long run(int x, int cnt, int lim) {
	if (cnt > 3) return 0;
	if (!x) return 1;
	if ((~M[cnt][x]) && !lim) return M[cnt][x];
	long long ans = 0;
	for (int op = lim, i = lim ? num[x] : 9; ~i; i--, op = 0) {
		ans += run(x - 1, cnt + bool(i), op);
	}
	if (!lim) M[cnt][x] = ans;
	return ans;
}
long long solve(long long x) {
	int len = 0;
	while (x) {
		num[++len] = x % 10;
		x /= 10;
	}
	return run(len, 0, 1);
}
int main() {
	scanf("%d", &Tim);
	memset(M, -1, sizeof M);
	while (Tim --> 0) {
		long long l, r;
		scanf("%lld%lld", &l, &r);
		printf("%lld\n", solve(r) - solve(l - 1));
	}
	return 0;
}

  

posted @ 2018-10-05 13:07  Memory_of_winter  阅读(192)  评论(0编辑  收藏  举报