[NC189A]数字权重

题目大意:有一个$n$位的数,设第$i$位为$a_i$(最高位为$a_1$)。问满足$(\sum\limits_{i=2}^n(a_i-a_{i-1}))==k$的数的个数(不含前导零)

解:发现$(\sum\limits_{i=2}^n(a_i-a_{i-1}))==k\Leftrightarrow a_n-a_1==k$。然后枚举$a_1$判断$a_n$是否合法就行了

卡点:模数为$10^9+7$,写成$10^{10}+7$

C++ Code:

#include <cstdio>
const long long mod = 1000000007;
long long n, k, ans;
long long pw(long long base, long long p) {
	long long res = 1;
	for (; p; p >>= 1, base = base * base % mod) if (p & 1) res = res * base % mod;
	return res;
}
int main() {
	scanf("%lld%lld", &n, &k);
	for (int i = 1; i < 10; i++) {
		if (i + k < 10 && i + k >= 0) (ans += pw(10, n - 2)) %= mod;
	}
	printf("%lld\n", ans);
	return 0;
}

 

posted @ 2018-09-13 11:22  Memory_of_winter  阅读(289)  评论(0编辑  收藏  举报