[洛谷P2257]YY的GCD
题目大意:多组数据(小于等于$10000$),每组数据给你$n,m(1\leqslant n,m\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y=1}^m[(x,y)\in \rm prime]$($(a,b)$为$a,b$的$gcd$)
题解:$下文中令n\leqslant m$
$$
莫比乌斯反演公式:\\
\def\dsum{\displaystyle\sum\limits}\\
1.F(x)=\dsum_{d|x}f(d)\Rightarrow f(x)=\dsum_{d|x}\mu\Big(\dfrac{x}{d}\Big)F(d)\\
2.F(x)=\dsum_{x|d}f(d)\Rightarrow f(x)=\dsum_{x|d}\mu\Big(\dfrac{d}{x}\Big)F(d)\\
$$
$$
\begin{align*}
\def\dsum{\displaystyle\sum\limits}
令f(p)&=\dsum_{i=1}^n\dsum_{j=1}^m[(i,j)==p]\\
令F(p)&=\dsum_{p|k}f(k)\\
&=\dsum_{p|k}\dsum_{i=1}^n\dsum_{j=1}^m[(i,j)==k]\\
&=\dsum_{i=1}^n\dsum_{j=1}^m[p|(i,j)]\\
&=\left\lfloor\dfrac{n}{p}\right\rfloor \cdot \left\lfloor\dfrac{m}{p}\right\rfloor\\
通过反演公式&(2):\\
\therefore f(p)&=\dsum_{p|k}F(k)\mu\Big(\dfrac{k}{p}\Big)\\
&=\dsum_{i=1}^n\mu(i)\left\lfloor\dfrac{n}{i\cdot p}\right\rfloor\cdot\left\lfloor\dfrac{m}{i\cdot p}\right\rfloor\\
\therefore ans&=\dsum_{p\in \rm prime}f(p)\\
&=\dsum_{p\in \rm prime}\dsum_{i=1}^n\mu(i)\left\lfloor\dfrac{n}{i\cdot p}\right\rfloor\cdot\left\lfloor\dfrac{m}{i\cdot p}\right\rfloor\\
&=\dsum_{i=1}^n\dsum_{p\in \rm prime\\p|i}\mu\Big(\dfrac{i}{p}\Big)\left\lfloor\dfrac{n}{i}\right\rfloor\cdot\left\lfloor\dfrac{m}{i}\right\rfloor\\
令g(p)&=\dsum_{p\in \rm prime\\p|i}\mu\Big(\dfrac{i}{p}\Big)(可以预处理)\\
\therefore ans&=\dsum_{i=1}^n g(i)\left\lfloor\dfrac{n}{i}\right\rfloor\cdot\left\lfloor\dfrac{m}{i}\right\rfloor\\
\end{align*}\\
然而这样还是会TLE,可以令sg(p)=\dsum_{i=1}^p g(i),然后整除分块,就可以一次性求出\left\lfloor\dfrac{n}{i}\right\rfloor\cdot\left\lfloor\dfrac{m}{i}\right\rfloor相同的区间就行了
$$
UPDATE(2019-8-9):莫比乌斯反演常用公式:
$$
\sum\limits_{d|n}\mu(d)=[n=1]
$$
卡点:1.没有整除分块(前缀和优化)导致$TLE$
C++ Code:
#include <cstdio> #include <cstring> #define maxn 10000010 using namespace std; int Tim, n, m; int miu[maxn], plist[maxn], ptot; int g[maxn]; bool isp[maxn]; void sieve(int n) { memset(isp, true, sizeof isp); miu[1] = 1; for (int i = 2; i < n; i++) { if (isp[i]) plist[ptot++] = i, miu[i] = -1; for (int j = 0; j < ptot && i * plist[j] < n; j++) { int tmp = i * plist[j]; isp[tmp] = false; if (i % plist[j] == 0) { miu[tmp] = 0; break; } miu[tmp] = -miu[i]; } } for (int i = 0; i < ptot; i++) { for (int j = 1; j * plist[i] < n; j++) g[j * plist[i]] += miu[j]; } for (int i = 2; i <= n; i++) g[i] += g[i - 1]; } inline int min(int a, int b) {return a < b ? a : b;} long long solve(int n, int m) { long long ans = 0; int i, j; int tmp = min(n, m); for (i = 1; i <= tmp; i = j + 1) { j = min(n / (n / i), m / (m / i)); ans += 1ll * (n / i) * (m / i) * (g[j] - g[i - 1]); } return ans; } int main() { sieve(maxn); scanf("%d", &Tim); while (Tim --> 0) { scanf("%d%d", &n, &m); printf("%lld\n", solve(n, m)); } return 0; }