[洛谷P4238]【模板】多项式求逆
题目大意:多项式求逆
题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \dfrac{n}{2} \rceil}$下的逆元)
卡点:无
C++ Code:
#include <cstdio> #define int long long #define maxn 262144 using namespace std; const int mod = 998244353; const int P = 3, invP = (mod + 1) / P; int n, l, dig; int a[maxn], b[maxn], tmp[maxn], rev[maxn]; int pw(int base, int p) { int ans = 1; for (p <<= 1; p >>= 1; base = (base * base) % mod) if (p & 1) ans = (ans * base) % mod; return ans; } int inv(int x) { return pw(x, mod - 2); } void swap(int &a, int &b) {a ^= b ^= a ^= b;} void NTT(int *a, int op) { int Yx; if (op == 1) Yx = P; else Yx = invP; for (int i = 0; i < l; i++) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int mid = 1; mid < l; mid <<= 1) { int Wn = pw(Yx, (mod - 1) / (mid << 1)); for (int i = 0; i < l; i += mid << 1) { int W = 1; for (int j = 0; j < mid; j++, W = W * Wn % mod) { int X = a[i + j], Y = W * a[i + j + mid] % mod; a[i + j] = (X + Y) % mod; a[i + j + mid] = (X - Y + mod) % mod; } } } if (op == -1) { int invl = inv(l); for (int i = 0; i < l; i++) a[i] = a[i] * invl % mod; } } void INV(int *a, int *b, int n) { if (n == 1) {b[0] = inv(a[0]); return ;} INV(a, b, n + 1 >> 1); l = 1; dig = 0; while (l < n << 1) l <<= 1, dig++; rev[0] = 0; for (int i = 1; i < l; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (dig - 1)); for (int i = 0; i < n; i++) tmp[i] = a[i]; for (int i = n; i < l; i++) tmp[i] = 0; NTT(b, 1); NTT(tmp, 1); for (int i = 0; i < l; i++) b[i] = (2 - tmp[i] * b[i] % mod + mod) % mod * b[i] % mod; NTT(b, -1); for (int i = n; i < l; i++) b[i] = 0; } signed main() { scanf("%lld", &n); for (int i = 0; i < n; i++) scanf("%lld", &a[i]), a[i] %= mod; INV(a, b, n); for (int i = 0; i < n; i++) printf("%lld ", b[i]); return 0; }