AtCoder Grand Contest 025 Problem D - Choosing Points

题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$。并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt{d2}$。

题解:如果$d mod 2=1$,如果$a^2+b^2=d$,a和b一定一奇一偶,按国际象棋黑白染色即可。如果$d mod 4=2$,如果$a^2+b^2=d$,a和b一定都是奇数,一行黑色,一行白色即可。如果$d mod 4=0$,把$2×2$的区域看成一个大格子,对$d/4$进行如上考虑即可。

卡点:

 

C++ Code:

#include<cstdio>
using namespace std;
int n,d1,d2,ans;
int s[610][610];
void run(int d){
	int tmp=0;
	while (!(d%4))d/=4,tmp++;
	if (d&1){
		for (int i=0;i<n*2;i++)
			for (int j=0;j<n*2;j++)
				if ((i>>tmp)+(j>>tmp)&1)s[i][j]=1;
	}else{
		for (int i=0;i<n*2;i++)
			for (int j=0;j<n*2;j++)
				if ((i>>tmp)&1)s[i][j]=1;
	}
}
int main(){
	scanf("%d%d%d",&n,&d1,&d2);
	run(d1),run(d2);
	for (int i=0;i<2*n;i++)
		for (int j=0;j<2*n;j++)
			if (ans<n*n&&!s[i][j])
				printf("%d %d\n",i,j),ans++;
	return 0;
} 

  

posted @ 2018-07-05 17:50  Memory_of_winter  阅读(215)  评论(0编辑  收藏  举报