[洛谷P4626]一道水题 II
题目大意:求$lcm(1,2,3,\cdots,n)\pmod{100000007}$,$n\leqslant10^8$
题解:先线性筛出质数,然后求每个质数最多出现的次数,可以用$\log_in$来求,$i$为该质数。使用换底公式$log_in=\dfrac{\log_2n}{\log_2i}$。
卡点:模数是$10^8+7$,看成$10^9+7$
C++ Code:
#include <algorithm> #include <bitset> #include <cstdio> #include <cmath> const int mod = 1e8 + 7; inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod; return res; } std::bitset<100000010> npri; int plist[5761460], ptot; void sieve(const int n) { for (register int i = 2; i <= n; ++i) { if (!npri[i]) plist[ptot++] = i; for (register int j = 0, t; (t = plist[j] * i) <= n; ++j) { npri.set(t); if (i % plist[j] == 0) break; } } } int n; long long ans = 1; int main() { scanf("%d", &n); sieve(n); for (register int i = 0; i < ptot; ++i) { ans = ans * pw(plist[i], static_cast<int> (log2(n) / log2(plist[i]))) % mod; } printf("%lld\n", ans); return 0; }