[CF1105D]Kilani and the Game

题目大意:给出一个$n\times m(n,m\leqslant10^3)$的地图,有$k(k\leqslant9)$个玩家,第$i$个玩家速度为$s_i$。地图中$\#$代表障碍;$.$ 代表空地;数字代表是一名编号为此数字的玩家的城堡。每个玩家按编号轮流操作,每次操作把自己城堡周围$s_i$格内的空地变成自己城堡。直到没有玩家能操作为止。输出每名玩家城堡的个数。

题解:$bfs$,显然发现每个点只会扩展一次,用$k$个$queue$保存每个人的可扩展的城堡,模拟扩展即可,$s_i$可以每次扩展一格,扩展$s_i$次来解决。复杂度$O(nm)$

卡点:

 

C++ Code:

#include <algorithm>
#include <cctype>
#include <cstdio>
#include <queue>
#define maxn 1005
#define maxk 10
const int D[2][4] = {{1, 0, -1, 0}, {0, 1, 0, -1}};

struct Point {
	int x, y;
	Point() { }
	Point(int __x, int __y) : x(__x), y(__y) { }
} ;
std::queue<Point> q[maxk];

bool used[maxn][maxn], Continue[maxk];
int n, m, k, len[maxk], ans[maxk];

inline bool over_range(int x, int y) {
	return x < 1 || x > n || y < 1 || y > m || used[x][y];
}

int main() {
	scanf("%d%d%d", &n, &m, &k);
	for (int i = 0; i < k; ++i) scanf("%d", len + i);
	for (int i = 1; i <= n; ++i) {
		static char s[maxn];
		scanf("%s", s + 1);
		for (int j = 1; j <= m; ++j) if (s[j] != '.') {
			used[i][j] = true;
			if (isdigit(s[j])) {
				int pos = (s[j] & 15) - 1;
				++ans[pos];
				q[pos].push(Point(i, j));
			}
		}
	}
	for (int now = 0, num = k; num; now += 1 - k, now += now >> 31 & k) {
		static std::queue<Point> Q;
		std::queue<Point> &q = ::q[now];
		for (int Tim = len[now]; Tim; --Tim) {
			if (q.empty()) {
				num -= !Continue[now];
				Continue[now] = true;
				break;
			}
			while (!q.empty()) {
				Point u = q.front(); q.pop();
				for (int i = 0, x, y; i < 4; ++i) {
					x = u.x + D[0][i], y = u.y + D[1][i];
					if (!over_range(x, y)) {
						++ans[now];
						used[x][y] = true;
						Q.push(Point(x, y));
					}
				}
			}
			std::swap(q, Q);
		}
	}
	for (int i = 0; i < k; ++i) printf("%d ", ans[i]); puts("");
	return 0;
}

  

posted @ 2019-02-03 20:47  Memory_of_winter  阅读(126)  评论(0编辑  收藏  举报