[洛谷P2511][HAOI2008]木棍分割

题目大意:有$n(n\leqslant5\times10^4)$根木棍,连续放在一起,把它们分成$m(\leqslant10^3)$段,要求使得最长的段最短,问最短的长度以及方案数

题解:要使得最长的段最短,可以想到二分,然后方案数$DP$,令$f_{i,j}$表示现在是第$i$段,在第$j$根木棍后分段的方案数,$f_{i,j}=\sum\limits_{k=1\\dis(k,j)\leqslant res}^jf_{i-1,k}$($dis(i,j)$表示第$i$根小木棍到第$j$根小木棍的总长度,$res$表示最短的长度),可以用双指针优化到$O(nm)$

卡点:

  1. $check$程序返回了一个$bool$
  2. 一个地方没取模

 

C++ Code:

#include <algorithm>
#include <cstdio>
#define maxn 500010
const int mod = 10007;
inline void reduce(int &x) { x += x >> 31 & mod; }

int n, m, res, ans;
int li[maxn];
int f[2][maxn], now = 1, past = 0;

inline int check(int mid) {
	int cnt = 0, res = 0;
	for (int i = 1; i <= n; ++i) {
		if (cnt + li[i] > mid) {
			cnt = 0;
			++res;
		}
		cnt += li[i];
	}
	return res + static_cast<bool> (cnt);
}

int main() {
	scanf("%d%d", &n, &m); ++m;
	{
		int l = 1, r = 0;
		for (int i = 1; i <= n; ++i) {
			scanf("%d", li + i);
			l = std::max(li[i], l);
			r += li[i];
		}
		while (l <= r) {
			int mid = l + r >> 1;
			if (check(mid) <= m) r = mid - 1, res = mid;
			else l = mid + 1;
		}
	}
	printf("%d ", res);
	f[now][0] = 1;
	for (int i = 1; i <= m; ++i) {
		static const int sz = sizeof f[now];
		std::swap(now, past);
		__builtin_memset(f[now], 0, sz);
		int len = 0, up = f[past][0], lst = 0;
		for (int j = 1; j <= n; ++j) {
			len += li[j];
			while (len > res) {
				reduce(up -= f[past][lst]);
				len -= li[++lst];
			}
			f[now][j] = up;
			reduce(up += f[past][j] - mod);
		}
		reduce(ans += f[now][n] - mod);
	}
	printf("%d\n", ans);
	return 0;
}

  

posted @ 2019-01-27 20:26  Memory_of_winter  阅读(170)  评论(0编辑  收藏  举报