[CF888G]Xor-MST
题目大意:给一个$n$个点的完全图,第$i$个点有点权$v_i$,一条边$x-y$的边权为$v_x\oplus v_y$,求最小生成树
题解:明显$Kruskal$和$Prim$都会$TLE$,有一种别的生成树的算法为$Sollin$。它对棵树找到离它最近的不连通的一棵树,对每棵树找好后若可以连这一条边就连接这条边。可以证明每次连通块个数至少减少一半,每次找最近的树可以枚举每一条边,复杂度$O(m)$,所以总复杂度是$O(m\log_2 n)$的。
在这一题中,可以用$Trie$来优化找最近的树的过程,可以优化为$O(\log_2 v)$,可以通过本题
卡点:发现两个点点权相同就不会产生贡献,于是就可以排序去重,记录最开始连通块个数时记录的是没有去重的点数,于是就一直连不完,一直$TLE$
C++ Code:
#include <algorithm> #include <cctype> #include <cstdio> namespace __IO { namespace R { int x, ch; inline int read() { ch = getchar(); while (isspace(ch)) ch = getchar(); for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15); return x; } } } using __IO::R::read; #define maxn 200010 const int inf = 0x3f3f3f3f; namespace Trie { #define M 29 #define N (maxn * (M + 2)) int V[N], nxt[2][N], root, idx; void modify(int x, int num = 1) { int p = root; for (register int i = M; ~i; i--) { int tmp = x >> i & 1; if (!nxt[tmp][p]) nxt[tmp][p] = ++idx; p = nxt[tmp][p]; V[p] += num; } } int query(int x) { int p = root, res = 0; for (register int i = M; ~i; i--) { int tmp = x >> i & 1; if (V[nxt[tmp][p]]) p = nxt[tmp][p]; else p = nxt[!tmp][p], res |= 1 << i; } return res; } #undef N #undef M } int n, num; std::pair<int, int> M[maxn]; int s[maxn], rnk[maxn]; long long ans; int f[maxn]; int find(int x) {return x == f[x] ? x : (f[x] = find(f[x]));} inline bool cmp(int a, int b) {return f[a] < f[b];} int main() { n = read(); for (int i = 1; i <= n; i++) s[i] = read(); n = (std::sort(s + 1, s + n + 1), std::unique(s + 1, s + n + 1) - s - 1); for (int i = 1; i <= n; i++) { rnk[i] = f[i] = i; Trie::modify(s[i]); } num = n - 1; while (num) { for (int i = 1; i <= n; i++) find(i); std::sort(rnk + 1, rnk + n + 1, cmp); for (int i = 1; i <= n; i++) M[i] = std::make_pair(i, inf); for (int l = 1, r, father; l <= n; l = r + 1) { father = f[rnk[r = l]]; while (r < n && father == f[rnk[r + 1]]) r++; for (int i = l; i <= r; i++) Trie::modify(s[rnk[i]], -1); for (int i = l; i <= r; i++) { int val = Trie::query(s[rnk[i]]), pos = std::lower_bound(s + 1, s + n + 1, s[rnk[i]] ^ val) - s; if (val < M[father].second) M[father] = std::make_pair(pos, val); } for (int i = l; i <= r; i++) Trie::modify(s[rnk[i]]); } for (int i = 1; i <= n; i++) { int x = find(i), y = find(M[i].first); if (x != y) { f[x] = y; ans += M[i].second; num--; } } } printf("%lld\n", ans); return 0; }