[洛谷P4735]最大异或和

题目大意:有一串初始长度为$n$的序列$a$,有两种操作:

  1. $A\;x:$在序列末尾加一个数$x$
  2. $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$,使得: $a_p\oplus a_{p+1}\oplus\dots\oplus a_n\oplus x$最大,输出最大是多少。

题解:把序列前缀和,变成$S$,就变成了在$[l-2,r-1]$区间内找一个数$S_p$,使得$S_p\oplus S_n\oplus x$最大。可持久化$trie$

卡点:

 

C++ Code:

#include <cstdio>
#include <iostream>
#define M 24
#define maxn 600010 
#define N (maxn * (M + 1))

int n, m;
int __root__[maxn], *root = __root__ + 1, idx;
int nxt[N][2], V[N], sum;
void insert(int &rt, int x, int dep) {
	nxt[++idx][0] = nxt[rt][0], nxt[idx][1] = nxt[rt][1], V[idx] = V[rt] + 1, rt = idx;
	if (!~dep) return ;
	int tmp = x >> dep & 1;
	insert(nxt[rt][tmp], x, dep - 1);
}
int query(int x, int L, int R) {
	int res = 0;
	for (int i = M; ~i; i--) {
		int tmp = x >> i & 1;
		if (V[nxt[R][!tmp]] - V[nxt[L][!tmp]]) L = nxt[L][!tmp], R = nxt[R][!tmp], res |= 1 << i;
		else L = nxt[L][tmp], R = nxt[R][tmp];
	}
	return res;
}
int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	std::cin >> n >> m;
	insert(root[0], 0, M);
	for (int i = 1, x; i <= n; i++) {
		std::cin >> x;
		insert(root[i] = root[i - 1], sum ^= x, M);
	}
	while (m --> 0) {
		char op;
		int l, r, x;
		std::cin >> op >> l;
		if (op == 'A') {
			root[n + 1] = root[n];
			insert(root[++n], sum ^= l, M);
		} else {
			std::cin >> r >> x;
			std::cout << query(x ^ sum, root[l - 2], root[r - 1]) << '\n';
		}
	}
	return 0;
}

  

posted @ 2018-11-27 09:53  Memory_of_winter  阅读(154)  评论(0编辑  收藏  举报