T1:To Be Saikyo
\(x \geqslant \max({p_i}), i > 1\)
代码实现
n = int(input())
a = list(map(int, input().split()))
if n == 1:
exit(print(0))
mx = max(a[1:])
ans = max(0, mx+1-a[0])
print(ans)
T2:Who is Saikyo?
对 \((A_i, B_i)\) 连一条有向边,使得 \(A_i \to B_i\),同时统计每个点的入度
当入度为 \(0\) 的点超过 \(1\) 个则无解
否则答案为入度为 \(0\) 的那个点
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
int main() {
int n, m;
cin >> n >> m;
set<int> st;
for (int i = 1; i <= n; ++i) st.insert(i);
rep(i, m) {
int a, b;
cin >> a >> b;
st.erase(b);
}
if (st.size() >= 2) puts("-1");
else cout << *st.begin() << '\n';
return 0;
}
T3:Approximate Equalization 2
注意到不管怎么操作总和始终不变
最终的形态经排序后为 \((X, X, \cdots, X+1, \cdots, X+1)\)
总和 \(S = NX+r\),其中 \(r\) 表示序列中 +1
的个数
那么 \(X = \lfloor\frac{S}{N}\rfloor\),\(r = S\%N\)
然后将最终形态的序列和原序列作差,对差值为正数的那些数进行累加便能得到答案
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<ll> a(n);
rep(i, n) cin >> a[i];
ll s = reduce(a.begin(), a.end());
ll x = s/n, r = s%n;
vector<ll> b(n, x);
rep(i, r) b[i]++;
sort(a.begin(), a.end());
sort(b.begin(), b.end());
ll ans = 0;
rep(i, n) ans += abs(a[i]-b[i]);
ans /= 2;
cout << ans << '\n';
return 0;
}
T4:Odd or Even
可以通过查询前 \(K+1\) 个数中任意 \(K\) 个数的和的奇偶性来确定这前 \(K+1\) 个数,然后固定前 \(K-1\) 个数,通过向其中分别加入 \(A_{K+2}, A_{K+3}, \cdots, A_N\) 从而得到 \(A_{K+2}, A_{K+3}, \cdots, A_N\)。
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
int main() {
int n, k;
cin >> n >> k;
auto f = [&](vector<int> x) {
rep(i, k) x[i]++;
cout << '?';
rep(i, k) cout << ' ' << x[i];
cout << '\n';
int res;
cin >> res;
return res;
};
vector<int> a(n), b(k+1);
int t = 0;
rep(i, k+1) {
vector<int> x;
rep(j, k+1) if (j != i) x.push_back(j);
b[i] = f(x);
// t += b[i]; t %= 2;
t ^= b[i];
}
rep(i, k+1) a[i] = b[i]^t;
t = 0;
rep(i, k-1) t ^= a[i];
for (int i = k+1; i < n; ++i) {
vector<int> x;
rep(j, k-1) x.push_back(j);
x.push_back(i);
a[i] = t^f(x);
}
cout << '!';
rep(i, n) cout << ' ' << a[i];
return 0;
}
T5:Duplicate
如果 \(S\) 中存在大于 \(1\) 的两个数相邻一定无解,因为从那里一定会产生大于 \(1\) 的两个数相邻的地方
除此以外,通过找规律发现从后往前删除每个字符会得到一个一次函数
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint998244353;
int main() {
int n;
cin >> n;
string s;
cin >> s;
rep(i, n-1) {
if (s[i] > '1' and s[i+1] > '1') {
puts("-1");
return 0;
}
}
mint ans;
while (s.size() > 1) {
int c = s.back()-'0';
ans += 1;
ans += ans*(c-1);
s.pop_back();
}
cout << ans.val() << '\n';
return 0;
}