T1:矩形覆盖

std::set 或线段树来维护扫描线即可

代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)

using std::cin;
using std::cout;
using std::multiset;
using ll = long long;

struct Node {
    ll x, h;
    int type;
    bool operator<(const Node &o) const {
        return x < o.x;
    }
} a[600005];

int main() {
    int n;
    cin >> n;
    
    rep(i, n) {
        int s, t, h;
        cin >> s >> t >> h;
        a[i*2-1] = {s, h, 0}; // 0 表示左边界
        a[i*2] = {t, h, 1}; // 1 表示右边界
    }
    
    int n2 = n*2;
    std::sort(a+1, a+n2+1);
    
    ll ans = 0;
    ll last = 0; // 扫描线上一次扫过的矩形高度的位置
    multiset<ll> st; // 维护当前存活着的的矩形高度
    st.insert(0);
    for (int i = 1; i <= n2;) {
        ll x = a[i].x;
        ans += *st.rbegin()*(a[i].x-last);
        last = a[i].x;
        while (i <= n2 and a[i].x == last) {
            if (a[i].type) st.erase(st.find(a[i].h));
            else st.insert(a[i].h);
            ++i;
        }
    }
    
    cout << ans << '\n';
    
    return 0;
}

T2: 评测队列(二)

假设 \(t_0 + △\)\(M_2\) 才空闲,运行开始的时间是 \(\max(△, a_1)\)

交换前:\(t_0 + \max\{a_1+b_1, a_1+a_2, △+b_1\} + b_2\)
交换后:\(t_0 + \max\{a_2+b_2, a_2+a_1, △+b_2\} + b_1\)

情况1:\(a_2 = \min\{a_1, a_2, b_1, b_2\}\)

交换前: \(t_0 + \max\{a_1+b_1, a_1+a_2, △+b_1\} + b_2 = t_0 + \max\{a_1+b_1, △+b_1\} + b_2 = t_0 + \max\{a_1, △\} + b_1+b_2 = t_0 + \max\{a_1+b_2, △+b_2\} + b_1\)
交换后:\(t_0 + \max\{a_2+b_2, a_2+a_1, △+b_2\} + b_1\)

可推出上式 \(\geqslant\) 下式,这样交换一定是不亏的

情况2:\(b_1 = \min\{a_1, a_2, b_1, b_2\}\)

交换前:\(t_0 + \max\{a_1+b_1, a_1+a_2, △+b_1\} + b_2 = t_0 + \max\{a_1+a_2, △+b_1\} + b_2 = t_0 + \max\{a_1+a_2+b_2, △+b_1+b_2\}\)
交换后:\(t_0 + \max\{a_2+b_2, a_2+a_1, △+b_2\} + b_1 = t_0 + \max\{a_2+b_2+b_1, a_2+a_1+b_1, △+b_2+b_1\}\)

可推出上式 \(\geqslant\) 下式,这样交换一定是不亏的

结论:

如果满足

\(\hspace{3cm} b_1 = \min\{a_1, a_2, b_1, b_2\} \)\(a_2 = \min\{a_1, a_2, b_1, b_2\}\)

则交换

也就是说我们应当使结果满足

\[\min\{a_i, b_{i+1}\} \leqslant \min\{a_{i+1}, b_i\} \]

也叫 \(\operatorname{Johnson}\) 不等式

代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)

using std::cin;
using std::cout;
using std::min;
using std::max;

struct Node {
    int a, b;
    bool operator<(const Node &o) const {
        return min(o.b, a) < min(b, o.a);
    }
} p[200005];

int main() {
    int n;
    cin >> n;
    
    rep(i, n) cin >> p[i].a >> p[i].b;
    
    std::sort(p, p+n);
    
    int s1 = 0, s2 = 0;
    rep(i, n) {
        s1 += p[i].a;
        s2 = max(s1, s2) + p[i].b;
    }
    
    cout << s2 << '\n';
    
    return 0;
}

T3: 殊途同归

注意虽然不允许两条路径有重边,但允许有重复的点

其实本题是一道费用流的模板题

本题的建图比较简单:只需开源点 \(S\) 和汇点 \(T\),从点 \(S\)\(1\) 连一条有向边,这条边的容量是 \(2\)、费用是 \(0\),类似地,从点 \(N\)\(T\) 连一条有向边,这条边的容量是 \(2\)、费用是 \(0\)
(可行流是 \(2\),是因为题目让我们找到两条路径;费用是 \(0\),是因为这两个点是虚拟的点,不产生费用)

对于其他边,容量都是 \(1\),费用是相应边权

代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)

using std::cin;
using std::cout;
using std::vector;
using ll = long long;

namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

}  // namespace internal

template<class Cap, class Cost> 
struct mcf_graph {
  public:
    mcf_graph() {}
    explicit mcf_graph(int n) : _n(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

  private:
    int _n;
    std::vector<edge> _edges;

    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge

        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            // que[0..heap_r) was heapified
            size_t heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

int main() {
    int n, m;
    cin >> n >> m;
    
    int sv = n+1, tv = n+2;
    mcf_graph<int, ll> g(tv+1);
    g.add_edge(sv, 1, 2, 0);
    g.add_edge(n, tv, 2, 0);
    rep(i, m) {
        int u, v, w;
        cin >> u >> v >> w;
        g.add_edge(u, v, 1, w);
    }
    
    ll ans = g.flow(sv, tv).second;
    cout << ans << '\n';
    
    return 0;
}