Pandas学习笔记
数据载入及初步观察
1 第一章:数据加载
1.1 载入数据
数据集下载 https://www.kaggle.com/c/titanic/overview
1.1.1 任务一:导入numpy和pandas
import numpy as np
import pandas as pd
import os as os
【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库
1.1.2 任务二:载入数据
(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据
df = pd.read_csv('train.csv')
df.head(3)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
df = pd.read_csv(r"D:\AI_camping\pandas入门\train.csv")
【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
【思考】知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下'.tsv'和'.csv'的不同,如何加载这两个数据集?
# 思考回答:结构化数据时,read_table()默认以'\t'为分隔符,read_csv()则默认以','为分割符。如果想要他们的效果一样,可以改变sep参数。
# tsv和csv都是用于储存表格数据的纯文本文件格式,tsv以'\t'为分割符,csv以','为分割符,tsv在某些领域更受欢迎,csv则应用更广泛。另外,二者的MIME类型也不同。
df = pd.read_table('train.csv',sep=',')
df.head(3)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
1.1.3 任务三:每1000行为一个数据模块,逐块读取
chunker = pd.read_csv('./train.csv',chunksize=1000)
for i in chunker:
print(i)
PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
.. ... ... ...
886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3
Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
.. ... ... ... ...
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0
Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
.. ... ... ... ... ...
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q
[891 rows x 12 columns]
【思考】什么是逐块读取?为什么要逐块读取呢?
【提示】大家可以chunker(数据块)是什么类型?用for
循环打印出来出处具体的样子是什么?
type(chunker)
# 逐块读取可以读取数据集的一部分,可以分批次处理数据,提高处理效率,同时避免内存溢出问题
-pandas.io.parsers.readers.TextFileReader
1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]
PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口
df = pd.read_csv('train.csv', names=['乘客ID','是否幸存','乘客等级(1/2/3等舱位)','乘客姓名','性别','年龄','堂兄弟/妹个数','父母与小孩个数','船票信息','票价','客舱','登船港口'], index_col='乘客ID',header = 0)
df.head(3)
是否幸存 | 乘客等级(1/2/3等舱位) | 乘客姓名 | 性别 | 年龄 | 堂兄弟/妹个数 | 父母与小孩个数 | 船票信息 | 票价 | 客舱 | 登船港口 | |
---|---|---|---|---|---|---|---|---|---|---|---|
乘客ID | |||||||||||
1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
【思考】所谓将表头改为中文其中一个思路是:将英文列名表头替换成中文。还有其他的方法吗?
【思考回答】还可以使用rename()方法,map()函数或为.colomns属性赋值
1.2 初步观察
导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等
1.2.1 任务一:查看数据的基本信息
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 891 entries, 1 to 891
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 是否幸存 891 non-null int64
1 乘客等级(1/2/3等舱位) 891 non-null int64
2 乘客姓名 891 non-null object
3 性别 891 non-null object
4 年龄 714 non-null float64
5 堂兄弟/妹个数 891 non-null int64
6 父母与小孩个数 891 non-null int64
7 船票信息 891 non-null object
8 票价 891 non-null float64
9 客舱 204 non-null object
10 登船港口 889 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB
1.2.2 任务二:观察表格前10行的数据和后15行的数据
df.head(10)
是否幸存 | 乘客等级(1/2/3等舱位) | 乘客姓名 | 性别 | 年龄 | 堂兄弟/妹个数 | 父母与小孩个数 | 船票信息 | 票价 | 客舱 | 登船港口 | |
---|---|---|---|---|---|---|---|---|---|---|---|
乘客ID | |||||||||||
1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
6 | 0 | 3 | Moran, Mr. James | male | NaN | 0 | 0 | 330877 | 8.4583 | NaN | Q |
7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.0 | 3 | 1 | 349909 | 21.0750 | NaN | S |
9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
df.head(-15)
# df.tail(15)
是否幸存 | 乘客等级(1/2/3等舱位) | 乘客姓名 | 性别 | 年龄 | 堂兄弟/妹个数 | 父母与小孩个数 | 船票信息 | 票价 | 客舱 | 登船港口 | |
---|---|---|---|---|---|---|---|---|---|---|---|
乘客ID | |||||||||||
1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0000 | B51 B53 B55 | S |
874 | 0 | 3 | Vander Cruyssen, Mr. Victor | male | 47.0 | 0 | 0 | 345765 | 9.0000 | NaN | S |
875 | 1 | 2 | Abelson, Mrs. Samuel (Hannah Wizosky) | female | 28.0 | 1 | 0 | P/PP 3381 | 24.0000 | NaN | C |
876 | 1 | 3 | Najib, Miss. Adele Kiamie "Jane" | female | 15.0 | 0 | 0 | 2667 | 7.2250 | NaN | C |
876 rows × 11 columns
1.2.4 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False
df.isnull().head(5)
# isna()和isnull()相同
是否幸存 | 乘客等级(1/2/3等舱位) | 乘客姓名 | 性别 | 年龄 | 堂兄弟/妹个数 | 父母与小孩个数 | 船票信息 | 票价 | 客舱 | 登船港口 | |
---|---|---|---|---|---|---|---|---|---|---|---|
乘客ID | |||||||||||
1 | False | False | False | False | False | False | False | False | False | True | False |
2 | False | False | False | False | False | False | False | False | False | False | False |
3 | False | False | False | False | False | False | False | False | False | True | False |
4 | False | False | False | False | False | False | False | False | False | False | False |
5 | False | False | False | False | False | False | False | False | False | True | False |
【总结】上面的操作都是数据分析中对于数据本身的观察
【思考】对于一个数据,还可以从哪些方面来观察?找找答案,这个将对下面的数据分析有很大的帮助
# 思考回答:可以从数据的统计学性质分析,如平均值,方差,极值等
1.3 保存数据
1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv
# 注意:不同的操作系统保存下来可能会有乱码。大家可以加入`encoding='GBK' 或者 ’encoding = ’utf-8‘‘`
df.to_csv('train_chinese.csv')
【总结】数据的加载以及入门,接下来就要接触数据本身的运算,我们将主要掌握numpy和pandas在工作和项目场景的运用。
Pandas基础
1.4 知道你的数据叫什么
我们学习pandas的基础操作,那么上一节通过pandas加载之后的数据,其数据类型是什么呢?
1.4.1 任务一:pandas中有两个数据类型DateFrame和Series,通过查找简单了解他们。然后自己写一个关于这两个数据类型的小例子🌰[开放题]
# 引入环境
import numpy as np
import pandas as pd
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
state | year | pop | |
---|---|---|---|
0 | Ohio | 2000 | 1.5 |
1 | Ohio | 2001 | 1.7 |
2 | Ohio | 2002 | 3.6 |
3 | Nevada | 2001 | 2.4 |
4 | Nevada | 2002 | 2.9 |
5 | Nevada | 2003 | 3.2 |
1.4.2 任务二:根据上节课的方法载入"train.csv"文件
df = pd.read_csv('./train.csv')
df
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 12 columns
也可以加载上一节课保存的"train_chinese.csv"文件。
1.4.3 任务三:查看DataFrame数据的每列的名称
df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
dtype='object')
1.4.4任务四:查看"Cabin"这列的所有值 [有多种方法]
df['Cabin'].head(2)
0 NaN
1 C85
Name: Cabin, dtype: object
df.Cabin
0 NaN
1 C85
2 NaN
3 C123
4 NaN
...
886 NaN
887 B42
888 NaN
889 C148
890 NaN
Name: Cabin, Length: 891, dtype: object
1.4.5 任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除
经过我们的观察发现一个测试集test_1.csv有一列是多余的,我们需要将这个多余的列删去
test1 = pd.read_csv('test_1.csv')
test1
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 100 |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 100 |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 100 |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 100 |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 100 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S | 100 |
887 | 887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S | 100 |
888 | 888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S | 100 |
889 | 889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C | 100 |
890 | 890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q | 100 |
891 rows × 14 columns
del test1['a']
test1
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
887 | 887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
888 | 888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
889 | 889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
890 | 890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 13 columns
【思考】还有其他的删除多余的列的方式吗?
#思考回答
test1 = pd.read_csv('test_1.csv')
test1.drop('a', axis = 1, inplace=True)
test1
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
887 | 887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
888 | 888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
889 | 889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
890 | 890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 13 columns
1.4.6 任务六: 将['PassengerId','Name','Age','Ticket']这几个列元素隐藏,只观察其他几个列元素
df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3) #axis指定删除列元素
Survived | Pclass | Sex | SibSp | Parch | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | male | 1 | 0 | 7.2500 | NaN | S |
1 | 1 | 1 | female | 1 | 0 | 71.2833 | C85 | C |
2 | 1 | 3 | female | 0 | 0 | 7.9250 | NaN | S |
【思考】对比任务五和任务六,是不是使用了不一样的方法(函数),如果使用一样的函数如何完成上面的不同的要求呢?
【思考回答】
如果想要完全的删除你的数据结构,使用inplace=True,因为使用inplace就将原数据覆盖了,所以这里没有用
# 思考回答: 如果使用del, 原数据的这几个列元素会被完全删除.
df.head(3)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
1.5 筛选的逻辑
表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。
下面我们还是用实战来学习pandas这个功能。
1.5.1 任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘客信息。
df[df['Age']<10]
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.00 | 3 | 1 | 349909 | 21.0750 | NaN | S |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.00 | 1 | 1 | PP 9549 | 16.7000 | G6 | S |
16 | 17 | 0 | 3 | Rice, Master. Eugene | male | 2.00 | 4 | 1 | 382652 | 29.1250 | NaN | Q |
24 | 25 | 0 | 3 | Palsson, Miss. Torborg Danira | female | 8.00 | 3 | 1 | 349909 | 21.0750 | NaN | S |
43 | 44 | 1 | 2 | Laroche, Miss. Simonne Marie Anne Andree | female | 3.00 | 1 | 2 | SC/Paris 2123 | 41.5792 | NaN | C |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
827 | 828 | 1 | 2 | Mallet, Master. Andre | male | 1.00 | 0 | 2 | S.C./PARIS 2079 | 37.0042 | NaN | C |
831 | 832 | 1 | 2 | Richards, Master. George Sibley | male | 0.83 | 1 | 1 | 29106 | 18.7500 | NaN | S |
850 | 851 | 0 | 3 | Andersson, Master. Sigvard Harald Elias | male | 4.00 | 4 | 2 | 347082 | 31.2750 | NaN | S |
852 | 853 | 0 | 3 | Boulos, Miss. Nourelain | female | 9.00 | 1 | 1 | 2678 | 15.2458 | NaN | C |
869 | 870 | 1 | 3 | Johnson, Master. Harold Theodor | male | 4.00 | 1 | 1 | 347742 | 11.1333 | NaN | S |
62 rows × 12 columns
1.5.2 任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘客信息显示出来,并将这个数据命名为midage
midage = df[(df['Age']>10)&(df['Age']<50)]
midage.head(15)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
8 | 9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
9 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
12 | 13 | 0 | 3 | Saundercock, Mr. William Henry | male | 20.0 | 0 | 0 | A/5. 2151 | 8.0500 | NaN | S |
13 | 14 | 0 | 3 | Andersson, Mr. Anders Johan | male | 39.0 | 1 | 5 | 347082 | 31.2750 | NaN | S |
14 | 15 | 0 | 3 | Vestrom, Miss. Hulda Amanda Adolfina | female | 14.0 | 0 | 0 | 350406 | 7.8542 | NaN | S |
18 | 19 | 0 | 3 | Vander Planke, Mrs. Julius (Emelia Maria Vande... | female | 31.0 | 1 | 0 | 345763 | 18.0000 | NaN | S |
20 | 21 | 0 | 2 | Fynney, Mr. Joseph J | male | 35.0 | 0 | 0 | 239865 | 26.0000 | NaN | S |
21 | 22 | 1 | 2 | Beesley, Mr. Lawrence | male | 34.0 | 0 | 0 | 248698 | 13.0000 | D56 | S |
22 | 23 | 1 | 3 | McGowan, Miss. Anna "Annie" | female | 15.0 | 0 | 0 | 330923 | 8.0292 | NaN | Q |
23 | 24 | 1 | 1 | Sloper, Mr. William Thompson | male | 28.0 | 0 | 0 | 113788 | 35.5000 | A6 | S |
【提示】了解pandas的条件筛选方式以及如何使用交集和并集操作
1.5.3 任务三:将midage的数据中第100行的"Pclass"和"Sex"的数据显示出来
midage = midage.reset_index(drop=True)
midage.head(10)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
5 | 9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
6 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
7 | 13 | 0 | 3 | Saundercock, Mr. William Henry | male | 20.0 | 0 | 0 | A/5. 2151 | 8.0500 | NaN | S |
8 | 14 | 0 | 3 | Andersson, Mr. Anders Johan | male | 39.0 | 1 | 5 | 347082 | 31.2750 | NaN | S |
9 | 15 | 0 | 3 | Vestrom, Miss. Hulda Amanda Adolfina | female | 14.0 | 0 | 0 | 350406 | 7.8542 | NaN | S |
midage.loc[[100],['Pclass', 'Sex']]
Pclass | Sex | |
---|---|---|
100 | 2 | male |
【思考】这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?
[思考回答]该函数的作用是重置索引列,如果不用这个函数,会导致下面loc方法和iloc方法的结果不同
1.5.4 任务四:使用loc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来
midage.loc[[100, 105, 108],['Pclass','Name', 'Sex']]
Pclass | Name | Sex | |
---|---|---|---|
100 | 2 | Byles, Rev. Thomas Roussel Davids | male |
105 | 3 | Cribb, Mr. John Hatfield | male |
108 | 3 | Calic, Mr. Jovo | male |
1.5.5 任务五:使用iloc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来
midage.iloc[[100, 105, 108],[2,3,4]]
Pclass | Name | Sex | |
---|---|---|---|
100 | 2 | Byles, Rev. Thomas Roussel Davids | male |
105 | 3 | Cribb, Mr. John Hatfield | male |
108 | 3 | Calic, Mr. Jovo | male |
【思考】对比iloc
和loc
的异同
思考回答:iloc基于位置来选择数据,即抽出位次符合参数的行,loc基于标签选择数据,即抽出数字符合索引(index)的行
探索性数据分析
导入numpy、pandas包和数据
#加载所需的库
import pandas as pd
import numpy as np
#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据
df = pd.read_csv('train_chinese.csv')
1.6 了解你的数据吗?
1.6.1 任务一:利用Pandas对示例数据进行排序,要求升序
#自己构建一个都为数字的DataFrame数据
frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
index=['2', '1'],
columns=['d', 'a', 'b', 'c'])
frame
d | a | b | c | |
---|---|---|---|---|
2 | 0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 | 7 |
【代码解析】
pd.DataFrame() :创建一个DataFrame对象
np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7
index=['2, 1] :DataFrame 对象的索引列
columns=['d', 'a', 'b', 'c'] :DataFrame 对象的索引行
# 大多数时候我们都是想根据列的值来排序,所以,将你构建的DataFrame中的数据根据某一列,升序排列
frame.sort_values(by='c',ascending=False)
d | a | b | c | |
---|---|---|---|---|
1 | 4 | 5 | 6 | 7 |
2 | 0 | 1 | 2 | 3 |
可以看到sort_values这个函数中by参数指向要排列的列,ascending参数指向排序的方式(升序还是降序)
【总结】下面将不同的排序方式做一个小总结
# 让行索引升序排序
frame.sort_index()
d | a | b | c | |
---|---|---|---|---|
1 | 4 | 5 | 6 | 7 |
2 | 0 | 1 | 2 | 3 |
# 让列索引升序排序
frame.sort_index(axis=1)
a | b | c | d | |
---|---|---|---|---|
2 | 1 | 2 | 3 | 0 |
1 | 5 | 6 | 7 | 4 |
# 让列索引降序排序
frame.sort_index(axis=1, ascending=False)
d | c | b | a | |
---|---|---|---|---|
2 | 0 | 3 | 2 | 1 |
1 | 4 | 7 | 6 | 5 |
# 让任选两列数据同时降序排序
frame.sort_values(by=['a','c'],ascending=False)
d | a | b | c | |
---|---|---|---|---|
1 | 4 | 5 | 6 | 7 |
2 | 0 | 1 | 2 | 3 |
1.6.2 任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进行综合排序(降序排列),从数据中你能发现什么
'''
在开始我们已经导入了train_chinese.csv数据,而且前面我们也学习了导入数据过程,根据上面学习,我们直接对目标列进行排序即可
head(20) : 读取前20条数据
'''
df.sort_values(by=['年龄'],ascending=True).head(10)
乘客ID | 是否幸存 | 乘客等级(1/2/3等舱位) | 乘客姓名 | 性别 | 年龄 | 堂兄弟/妹个数 | 父母与小孩个数 | 船票信息 | 票价 | 客舱 | 登船港口 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
803 | 804 | 1 | 3 | Thomas, Master. Assad Alexander | male | 0.42 | 0 | 1 | 2625 | 8.5167 | NaN | C |
755 | 756 | 1 | 2 | Hamalainen, Master. Viljo | male | 0.67 | 1 | 1 | 250649 | 14.5000 | NaN | S |
644 | 645 | 1 | 3 | Baclini, Miss. Eugenie | female | 0.75 | 2 | 1 | 2666 | 19.2583 | NaN | C |
469 | 470 | 1 | 3 | Baclini, Miss. Helene Barbara | female | 0.75 | 2 | 1 | 2666 | 19.2583 | NaN | C |
78 | 79 | 1 | 2 | Caldwell, Master. Alden Gates | male | 0.83 | 0 | 2 | 248738 | 29.0000 | NaN | S |
831 | 832 | 1 | 2 | Richards, Master. George Sibley | male | 0.83 | 1 | 1 | 29106 | 18.7500 | NaN | S |
305 | 306 | 1 | 1 | Allison, Master. Hudson Trevor | male | 0.92 | 1 | 2 | 113781 | 151.5500 | C22 C26 | S |
386 | 387 | 0 | 3 | Goodwin, Master. Sidney Leonard | male | 1.00 | 5 | 2 | CA 2144 | 46.9000 | NaN | S |
172 | 173 | 1 | 3 | Johnson, Miss. Eleanor Ileen | female | 1.00 | 1 | 1 | 347742 | 11.1333 | NaN | S |
183 | 184 | 1 | 2 | Becker, Master. Richard F | male | 1.00 | 2 | 1 | 230136 | 39.0000 | F4 | S |
【思考】排序后,如果我们仅仅关注年龄和票价两列。根据常识我知道发现票价越高的应该客舱越好,所以我们会明显看出,票价前20的乘客中存活的有14人,这是相当高的一个比例,那么我们后面是不是可以进一步分析一下票价和存活之间的关系,年龄和存活之间的关系呢?当你开始发现数据之间的关系了,数据分析就开始了。
【思考回答】按年龄排序,发现十四个一岁以下婴儿存活了12个,存活率较高,说明逃生时大概率践行了优先护送婴幼儿逃生的原则
1.6.3 任务三:利用Pandas进行算术计算,计算两个DataFrame数据相加结果
# 具体请看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分
#建立一个例子
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
columns=['a', 'b', 'c'],
index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
columns=['a', 'e', 'c'],
index=['first', 'one', 'two', 'second'])
frame1_a
a | b | c | |
---|---|---|---|
one | 0.0 | 1.0 | 2.0 |
two | 3.0 | 4.0 | 5.0 |
three | 6.0 | 7.0 | 8.0 |
frame1_b
a | e | c | |
---|---|---|---|
first | 0.0 | 1.0 | 2.0 |
one | 3.0 | 4.0 | 5.0 |
two | 6.0 | 7.0 | 8.0 |
second | 9.0 | 10.0 | 11.0 |
#将frame_a和frame_b进行相加
frame1_a + frame1_b
a | b | c | e | |
---|---|---|---|---|
first | NaN | NaN | NaN | NaN |
one | 3.0 | NaN | 7.0 | NaN |
second | NaN | NaN | NaN | NaN |
three | NaN | NaN | NaN | NaN |
two | 9.0 | NaN | 13.0 | NaN |
【提醒】两个DataFrame相加后,会返回一个新的DataFrame,对应的行和列的值会相加,没有对应的会变成空值NaN。
当然,DataFrame还有很多算术运算,如减法,除法等,有兴趣的同学可以看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分,多在网络上查找相关学习资料。
1.6.4 任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有多少人?
'''
还是用之前导入的chinese_train.csv如果我们想看看在船上,最大的家族有多少人(‘兄弟姐妹个数’+‘父母子女个数’),我们该怎么做呢?
'''
max(df['堂兄弟/妹个数']+df['父母与小孩个数'])
10
1.6.5 任务五:学会使用Pandas describe()函数查看数据基本统计信息
#建立一个例子
frame2 = pd.DataFrame([[1.4, np.nan],
[7.1, -4.5],
[np.nan, np.nan],
[0.75, -1.3]
], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
one | two | |
---|---|---|
a | 1.40 | NaN |
b | 7.10 | -4.5 |
c | NaN | NaN |
d | 0.75 | -1.3 |
# 调用 describe 函数,观察frame2的数据基本信息
# frame2.describe()
'''
count : 样本数据大小
mean : 样本数据的平均值
std : 样本数据的标准差
min : 样本数据的最小值
25% : 样本数据25%的时候的值
50% : 样本数据50%的时候的值
75% : 样本数据75%的时候的值
max : 样本数据的最大值
'''
frame2.describe()
one | two | |
---|---|---|
count | 3.000000 | 2.000000 |
mean | 3.083333 | -2.900000 |
std | 3.493685 | 2.262742 |
min | 0.750000 | -4.500000 |
25% | 1.075000 | -3.700000 |
50% | 1.400000 | -2.900000 |
75% | 4.250000 | -2.100000 |
max | 7.100000 | -1.300000 |
1.6.6 任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列数据的基本统计数据,你能发现什么?
'''
看看泰坦尼克号数据集中 票价 这列数据的基本统计数据
'''
df['票价'].describe()
count 891.000000
mean 32.204208
std 49.693429
min 0.000000
25% 7.910400
50% 14.454200
75% 31.000000
max 512.329200
Name: 票价, dtype: float64
【思考】从上面数据我们可以看出,
一共有891个票价数据,
平均值约为:32.20,
标准差约为49.69,说明票价波动特别大,
25%的人的票价是低于7.91的,50%的人的票价低于14.45,75%的人的票价低于31.00,
票价最大值约为512.33,最小值为0。
'''
通过上面的例子,我们再看看泰坦尼克号数据集中 父母子女个数 这列数据的基本统计数据,然后可以说出你的想法
'''
df['父母与小孩个数'].describe()
count 891.000000
mean 0.381594
std 0.806057
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 6.000000
Name: 父母与小孩个数, dtype: float64
【思考】有更多想法,欢迎写在你的学习笔记中。
【回答】从上面的数据可以看出,共891个数据,均值为0.382,标准差为0.806,数据波动较小,至少75%的人未携父母和小孩登船
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本