杜教BM【转载】
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 #define rep(i,a,n) for (long long i=a;i<n;i++) 5 #define per(i,a,n) for (long long i=n-1;i>=a;i--) 6 #define pb push_back 7 #define mp make_pair 8 #define all(x) (x).begin(),(x).end() 9 #define fi first 10 #define se second 11 #define SZ(x) ((long long)(x).size()) 12 typedef vector<long long> VI; 13 typedef long long ll; 14 typedef pair<long long,long long> PII; 15 const ll mod=1e9+7; 16 ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} 17 // head 18 19 long long _,n; 20 namespace linear_seq 21 { 22 const long long N=10010; 23 ll res[N],base[N],_c[N],_md[N]; 24 25 vector<long long> Md; 26 void mul(ll *a,ll *b,long long k) 27 { 28 rep(i,0,k+k) _c[i]=0; 29 rep(i,0,k) if (a[i]) rep(j,0,k) 30 _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; 31 for (long long i=k+k-1;i>=k;i--) if (_c[i]) 32 rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; 33 rep(i,0,k) a[i]=_c[i]; 34 } 35 long long solve(ll n,VI a,VI b) 36 { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... 37 // printf("%d\n",SZ(b)); 38 ll ans=0,pnt=0; 39 long long k=SZ(a); 40 assert(SZ(a)==SZ(b)); 41 rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; 42 Md.clear(); 43 rep(i,0,k) if (_md[i]!=0) Md.push_back(i); 44 rep(i,0,k) res[i]=base[i]=0; 45 res[0]=1; 46 while ((1ll<<pnt)<=n) pnt++; 47 for (long long p=pnt;p>=0;p--) 48 { 49 mul(res,res,k); 50 if ((n>>p)&1) 51 { 52 for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; 53 rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; 54 } 55 } 56 rep(i,0,k) ans=(ans+res[i]*b[i])%mod; 57 if (ans<0) ans+=mod; 58 return ans; 59 } 60 VI BM(VI s) 61 { 62 VI C(1,1),B(1,1); 63 long long L=0,m=1,b=1; 64 rep(n,0,SZ(s)) 65 { 66 ll d=0; 67 rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; 68 if (d==0) ++m; 69 else if (2*L<=n) 70 { 71 VI T=C; 72 ll c=mod-d*powmod(b,mod-2)%mod; 73 while (SZ(C)<SZ(B)+m) C.pb(0); 74 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; 75 L=n+1-L; B=T; b=d; m=1; 76 } 77 else 78 { 79 ll c=mod-d*powmod(b,mod-2)%mod; 80 while (SZ(C)<SZ(B)+m) C.pb(0); 81 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; 82 ++m; 83 } 84 } 85 return C; 86 } 87 long long gao(VI a,ll n) 88 { 89 VI c=BM(a); 90 c.erase(c.begin()); 91 rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; 92 return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); 93 } 94 }; 95 96 int main() 97 { 98 while(~scanf("%I64d", &n)) 99 { printf("%I64d\n",linear_seq::gao(VI{1,5,11,36,95,281,781,2245,6336,18061, 51205},n-1)); 100 } 101 }