Loading

摘要: 前置 快速傅里叶变换 FFT 多项式的基石操作。 快速沃尔什变换 FWT 位运算卷积。鸽了。 快速数论变换 NTT 把 FFT 搬到了模意义下,终于可以做计数问题啦。 多项式牛顿迭代 简单粗暴的推导方式。 基本操作 封装 为了学习多项式的时候更加顺手,封装板子是很有必要的,而且也方便贺。试想 CF 阅读全文
posted @ 2022-09-01 17:14 Meatherm 阅读(59) 评论(0) 推荐(3) 编辑
摘要: 前言 如果完全不会求导和积分,以及泰勒展开,这里有一个实用性很强的教程 3blue1brown - 微积分的本质。 多项式牛顿迭代 给定函数 $G(x)$,求多项式 $F(x)$ 使得 $G(F(x)) \equiv 0 \pmod {x^n}$。 当 $n=1$ 时,可以单独求出 $[x_0]F( 阅读全文
posted @ 2022-09-01 17:12 Meatherm 阅读(75) 评论(0) 推荐(1) 编辑
摘要: 在 FFT 中,因为是浮点数计算因此会掉精度。如果你不知道 FFT 是什么,请阅读这里。 如果在模意义下,我们可以选择不使用复平面的单位根,而是模意义下的单位根。 考虑单位根的性质: $\omega_{n}^{n}=\omega_{n}^{0}=1$ 对于 $n=2m$,$\omega_{n}^{k 阅读全文
posted @ 2022-09-01 17:11 Meatherm 阅读(111) 评论(0) 推荐(1) 编辑
摘要: 一个看起来比较冷门的反演? 阅读全文
posted @ 2022-09-01 11:45 Meatherm 阅读(106) 评论(0) 推荐(1) 编辑