python爬取网页的多种方式以及保存方法
爬取网页信息并保存
bs4和lxml都是用来将接收的数据解析html
1.bs4+excel(openpyxl):
import requests
from bs4 import BeautifulSoup
from openpyxl import Workbook
wb = Workbook()
sheet = wb.active
sheet.title = '豆瓣读书Top250'
header = ['书名', '评分', '链接']
sheet.append(header)
headers = { 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' }
res = requests.get('https://book.douban.com/top250', headers=headers)
soup = BeautifulSoup(res.text, 'html.parser')
items = soup.find_all(class_='item')
for i in items:
tag = i.find(class_='pl2').find('a')
rating = i.find(class_='rating_nums').text
name = tag['title']
link = tag['href']
row = [name, rating, link]
sheet.append(row)
wb.save('豆瓣.xlsx')
2.bs4+csv
import requests
from bs4 import BeautifulSoup
import csv
with open('豆瓣.csv', 'w', newline='') as file:
csv_writer = csv.writer(file)
header = ['书名', '评分', '链接']
csv_writer.writerow(header)
headers = {'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'}
res = requests.get('https://book.douban.com/top250', headers=headers)
soup = BeautifulSoup(res.text, 'html.parser')
items = soup.find_all(class_='item')
for i in items:
tag = i.find(class_='pl2').find('a')
rating = i.find(class_='rating_nums').text
name = tag['title']
link = tag['href']
row = [name, rating, link]
csv_writer.writerow(row)
3.lxml+csv
# 导入相关的库
from lxml import etree
import requests
import csv # 运用Python中的csv库,把爬取到的信息存储在本地的CSV文件中
# 新建一个csv文件
# Permission denied
# 重复使用同一个csv文件会出现[没有权限;拒绝访问]
with open('douban.csv','w',newline='',encoding='utf-8') as fp:
# csv.writer()中可以传一个文件对象
writer = csv.writer(fp)
# 写入表头信息
writer.writerow(('name', 'url', 'author', 'publisher', 'date', 'price', 'rate', 'comment'))
# 构造urls
urls = 'https://book.douban.com/top250'
# 加入请求头
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36'
}
# 用requests库获取网页信息,lxml解析html文件
html = requests.get(urls, headers=headers)
selector = etree.HTML(html.text)
# 取大标签,以此类推
# <tr class='item'>
infos = selector.xpath('//tr[@class="item"]')
for info in infos:
# IndexError: list index out of range
name = info.xpath('td/div/a/@title')[0]
print(name)
url = info.xpath('td/div/a/@href')[0]
# /text 是获取到定位元素的文本值
book_infos = info.xpath('td/p/text()')[0]
# print(book_infos)
author = book_infos.split('/')[0]
publisher = book_infos.split('/')[-3]
date = book_infos.split('/')[-2]
price = book_infos.split('/')[-1]
rate = info.xpath('td[2]/div[2]/span[2]/text()')[0]
comments = info.xpath('td/p/span/text()')
comment = comments[0] if len(comments) != 0 else "空"
# 打印查看结果
print(name, url, author, publisher, date, price, rate, comment)
# 将上述的数据写入到csv文件
writer.writerow((name, url, author, publisher, date, price, rate, comment))
# 关闭csv文件
fp.close()
4.lxml+excel(openpyxl)
# 导入相关的库
from lxml import etree
import requests
from openpyxl import Workbook #excel库
# 构造urls
urls = 'https://book.douban.com/top250'
wb = Workbook() # 在本地创建Excel工作簿
sheet = wb.active # 激活worksheet
sheet.title = '豆瓣读书Top250'
header = ['name', 'url', 'author', 'publisher', 'date', 'price', 'rate', 'comment']
sheet.append(header)
headers = { 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' }
html = requests.get(url=urls, headers=headers)
selector = etree.HTML(html.text)
# 取大标签,以此类推
# <tr class='item'>
infos = selector.xpath('//tr[@class="item"]')
for info in infos:
# IndexError: list index out of range
name = info.xpath('td/div/a/@title')[0]
url = info.xpath('td/div/a/@href')[0]
# /text 是获取到定位元素的文本值
book_infos = info.xpath('td/p/text()')[0]
# print(book_infos)
author = book_infos.split('/')[0]
publisher = book_infos.split('/')[-3]
date = book_infos.split('/')[-2]
price = book_infos.split('/')[-1]
rate = info.xpath('td[2]/div[2]/span[2]/text()')[0]
comments = info.xpath('td/p/span/text()')
comment = comments[0] if len(comments) != 0 else "空"
row = [name, url, author, publisher, date, price, rate, comment]
sheet.append(row)
wb.save('豆瓣.xlsx')
5.bs4+excel(xlwt)
import re # 正则表达式,进行文字匹配
# import bs4 #只需要使用bs4中的BeautifulSoup因此可以如下写法:
from bs4 import BeautifulSoup # 网页解析,获取数据
import xlwt # 进行excel操作
import sqlite3 # 进行SQLlite数据库操作
import urllib.request, urllib.error # 指定url,获取网页数据
def main():
# 爬取的网页
baseurl = "https://movie.douban.com/top250?start="
# # 保存的路径
savepath = ".\\豆瓣电影Top250.xls" # 使用\\表示层级目录或者在整个字符串前加r“.\豆瓣电影Top250”
savepath2Db = "movies.db"
# # 1.爬取网页
# print(askURL(baseurl))
datalist = getData(baseurl)
print(datalist)
# # 3.保存数据(存储到excel中)
saveData(datalist, savepath)
# 影片详情链接的规则
findLink = re.compile('<a href="(.*?)">') # 创建正则表达式对象
# 影片图片的链接规则
findImgSrc = re.compile('<img alt=".*src="(.*?)"', re.S) # re.S忽略换行
# 影片片名
findTitle = re.compile('<span class="title">(.*)</span>')
# 影片评分
findRating = re.compile('<span class="rating_num" property="v:average">(.*)</span>')
# 评价人数
# findJudge = re.compile('<span>(\d*)(.*)人评价</span>')
findJudge = re.compile('<span>(\d*)人评价</span>')
# 概况
findInq = re.compile('<span class="inq">(.*)</span>')
# 影片相关内容
findBd = re.compile('<p class="">(.*?)</p>', re.S) # 中间有</br>,因此要忽略换行符
# 爬取网页
def getData(baseurl):
datalist = []
for i in range(0, 10): # 一页25条电影
url = baseurl + str(i*25)
html = askURL(url) # 保存获取到的网页源码
# print(html)
# 2.解析数据(逐一)
soup = BeautifulSoup(html, "html.parser") # 使用html.parser解析器解析html文档形成树形结构数据
for item in soup.find_all("div", class_="item"): # 查找符合要求的字符串,形成列表
# print(item)
data = [] # 保存一部电影的信息
item = str(item)
# 影片详情链接
link = re.findall(findLink, item)[0]
data.append(link)
# 图片
img = re.findall(findImgSrc, item)[0]
data.append(img)
# 标题
titles = re.findall(findTitle, item)
if(len(titles) == 2):
ctitle = titles[0] # 中文名
data.append(ctitle)
otitle = titles[1].replace("/", "")
data.append(otitle) # 外文名
else:
data.append(titles[0])
data.append(' ') # 外文名留空
# data.append(title)
# 评分
rating = re.findall(findRating, item)[0]
data.append(rating)
# 评价人数
judgeNum = re.findall(findJudge, item)[0]
# print(judgeNum)
data.append(judgeNum)
# 添加概述
inq = re.findall(findInq, item)
if len(inq) == 0:
data.append(" ")
else:
data.append(inq[0].replace("。", ""))
# 影片相关内容
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd) # 去掉</br>
bd = re.sub('/', " ", bd) # 替换/
data.append(bd.strip()) # 去掉前后的空格
datalist.append(data) # 把处理好的一部电影的信息保存
# for it in datalist:
# print(it)
return datalist
# 得到执行url的网页信息
def askURL(url):
# 头部信息 其中用户代理用于伪装浏览器访问网页
head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/87.0.4280.88 Safari/537.36"}
req = urllib.request.Request(url, headers=head)
html = "" # 获取到的网页源码
try:
response = urllib.request.urlopen(req)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr(e, "code"): # has attribute
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
def saveData(datalist, savepath):
book = xlwt.Workbook(encoding="utf-8", style_compression=0) # style_compression:压缩的效果
sheet = book.add_sheet("豆瓣电影top250", cell_overwrite_ok=True) # 单元格内容可覆盖
col = ("电影详情链接", "图片链接", "影片中文名", "影片外文名", "评分", "评价数", "概述", "相关信息") # 元组添加表头
for i in range(8): # 写入表头(列名)
sheet.write(0, i, col[i])
for i in range(1, len(datalist)+1):
for j in range(len(datalist[i-1])):
sheet.write(i, j, datalist[i-1][j])
book.save(savepath)
if __name__ == '__main__':
main()