【BZOJ2815】灾难(ZJOI2012)-拓扑排序+建树+LCA

测试地址:灾难
做法:本题需要用到拓扑排序+建树+LCA。
首先看到要处理DAG上的问题,自然而然地想到用拓扑排序处理出图的层次(这里的图是指从被吃的生物指向吃的生物的图)。我们发现题目要求的是,将某一个点删去后,有多少个点因此不能从最高层(即图中入度为0的点)走到,这个问题非常难考虑,如果我们能找到一个点,使得这个点被切断相当于这个点的所有食物全部灭绝,那么这样连起来就是一棵树,就可以通过求树的子树和解决这个问题。
考虑按照拓扑序建树,为了方便我们将点n+1作为所有入度为0的点的食物,然后对于一个点,它的父亲就是它所有食物的LCA,因为根据建出的树的性质,显然若是把一个点的祖先删除,就会令它的所有子孙灭绝,而要令一些点同时灭绝,显然需要删除它们的LCA。这样把树建出来后,每个点的子树大小-1(不算自己)就是这个点的灾难值了。
(据说这个高大上的玩意又称作支配树……好像在哪里听过的样子)
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,first[70010][3]={0},tot[3]={0},fa[70010][21],dep[70010],siz[70010];
int in[70010]={0},q[70010],h,t;
struct edge
{
    int v,next;
}e[1000010][3];

void insert(int a,int b,int type)
{
    e[++tot[type]][type].v=b;
    e[tot[type]][type].next=first[a][type];
    first[a][type]=tot[type];
}

int lca(int x,int y)
{
    if (dep[x]<dep[y]) swap(x,y);
    for(int i=20;i>=0;i--)
        if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
    if (x==y) return x;
    for(int i=20;i>=0;i--)
        if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}

void dfs(int v)
{
    siz[v]=1;
    for(int i=first[v][2];i;i=e[i][2].next)
    {
        dfs(e[i][2].v);
        siz[v]+=siz[e[i][2].v];
    }
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        int k;
        while(scanf("%d",&k)&&k)
            insert(k,i,0),insert(i,k,1),in[i]++;
        if (!in[i]) insert(n+1,i,0),insert(i,n+1,1),in[i]++;
    }

    fa[n+1][0]=0;
    dep[0]=0,dep[n+1]=1;
    q[1]=n+1;h=t=1;
    while(h<=t)
    {
        int v=q[h++];
        for(int i=first[v][0];i;i=e[i][0].next)
        {
            int x=e[i][0].v;
            in[x]--;
            if (!in[x])
            {
                for(int j=first[x][1];j;j=e[j][1].next)
                {
                    int y=e[j][1].v;
                    if (j==first[x][1]) fa[x][0]=y;
                    else fa[x][0]=lca(fa[x][0],y);
                }
                for(int j=1;j<=20;j++)
                    fa[x][j]=fa[fa[x][j-1]][j-1];
                insert(fa[x][0],x,2);
                dep[x]=dep[fa[x][0]]+1;
                q[++t]=x;
            }
        }
    }

    dfs(n+1);
    for(int i=1;i<=n;i++)
        printf("%d\n",siz[i]-1);

    return 0;
}
posted @ 2018-03-19 20:52  Maxwei_wzj  阅读(152)  评论(0编辑  收藏  举报