次梯度方向是函数值上升方向
💡 Definition of subgradient
We say a vector \(g\in \mathbb{R}^n\) is a subgradient of \(f:\mathbb{R}^n\to \mathbb{R}\) at \(x\in \operatorname{\textbf{dom}} f\) if for all \(y\in \operatorname{\textbf{dom}} f\),
\[ f(y)\ge f(x) + g^T(y-x).
\]
The set \(\partial f(x) = \{g|~f(y)\ge f(x) + g^T(y-x)\}\) is a subdifferential of \(f\) at \(x\).
📌 Proof
Consider \(g\) is a subgradient of \(f\) and \(\varepsilon>0\), we have
\[ f(x+\varepsilon g) \ge f(x) + g^T(\varepsilon g) = f(x) + \varepsilon \|g\|_2^2 \Rightarrow f(x+\varepsilon g)>f(x).
\]
This implies that \(g\) is ascent direction of \(f\).