最优化理论|为什么凸问题的解集是凸集

💡 问题描述

假设需要求解的凸问题表示如下:

\[ \begin{equation} \begin{aligned} &\underset{x}{\min}~f(x) \\ &{\rm s.t.}~~x \in S. \end{aligned} \end{equation} \]

\(f:\mathbb{R}^n \to \mathbb{R}\)为凸函数, \(S\)为凸集.若 \(C\) 是(1)的解集, 证明:\(C\)是凸集?


🚩 证明:

任取\(x_1,x_2 \in C\)均是凸问题(1)的解, 即\(f(x_1) = f(x_2)\), \(\forall \theta \in [0,1]\), 对于

\[ \theta x_1 + (1-\theta)x_2. \]

由于\(f(x)\)是凸函数, 所以

\[ f\Big(\theta x_1 + (1-\theta)x_2\Big) \le \theta f(x_1) + (1-\theta)f(x_2) = f(x_1). \]

所以\(\theta x_1 + (1-\theta)x_2 \in C\), 故而\(C\)为凸集.


英文版本:

🚩 Proof:

Let $ x_1, x_2 \in C $ be any solutions to the convex problem (1), i.e., $ f(x_1) = f(x_2) $. For any $ \theta \in [0,1] $, consider the point

\[ \theta x_1 + (1-\theta)x_2. \]

Since $ f(x) $ is a convex function, it follows that

\[ f\Big(\theta x_1 + (1-\theta)x_2\Big) \le \theta f(x_1) + (1-\theta)f(x_2) = f(x_1). \]

Thus, $ \theta x_1 + (1-\theta)x_2 \in C $, which implies that $ C $ is a convex set.


posted @ 2024-11-09 15:50  MathClown  阅读(20)  评论(0编辑  收藏  举报