Math521_刘雷

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: :: 管理 ::

若数列\(\{a_n\}\)满足\(a_{n+1}=3a_n+2\),\(n\in\mathbb{N}^\ast\),且\(a_1=2\).
\((1)\) 求数列\(\{a_n\}\)的通项公式;
\((2)\)\(b_n=\dfrac{1}{a_n^2}+\dfrac{1}{a_n}\),数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),求证:\(\forall n\in\mathbb{N}^\ast,S_n<\dfrac{31}{32}\).

解析:
\((1)\) 由题$$
a_{n+1}+1=3\left(a_n+1\right).$$所以$$
a_n=3n-1,n\in\mathbb{N}\ast.$$
\((2)\) 结合\((1)\)可知\(b_n=\dfrac{3^n}{\left(3^n-1\right)^2}\),所以$$
\forall n\geqslant 2,b_n=\dfrac{3{n-1}}{\left(3n-1\right)\left(3{n-1}-\dfrac{1}{3}\right)}<\dfrac{1}{2}\left(\dfrac{1}{3-1}-\dfrac{1}{3^n-1}\right).$$
从而
$$
\begin{split}
S_n&\leqslant b_1+b_2+\sum_{k=3}^{n}\left[\dfrac{1}{2}\left( \dfrac{1}{3{k-1}-1}-\dfrac{1}{3k-1}\right)\right]\
&=\dfrac{3}{4}+\dfrac{9}{64}+\dfrac{1}{16}-\dfrac{1}{2}\cdot\dfrac{1}{3^n-1}\
&<\dfrac{61}{64}<\dfrac{31}{32}.
\end{split}
$$
证毕.

posted on 2019-12-09 14:36  Math521_刘雷  阅读(402)  评论(0编辑  收藏  举报