若平面向量\(\left| \boldsymbol{a}\right|=2\),\(\left| \boldsymbol{b}\right|=3\),\(\left| \boldsymbol{e}\right|=1\),且\(\boldsymbol{a}\cdot\boldsymbol{b}-\boldsymbol{e}\cdot\left(\boldsymbol{a}+\boldsymbol{b}\right)+1=0\).则\(\left| \boldsymbol{a}-\boldsymbol{b}\right|\)的最小值是\((\qquad)\)
\(\mathrm{A}.1\) \(\qquad\mathrm{B}.2\sqrt{3}-1\) \(\qquad\mathrm{C}.\sqrt{12-4\sqrt{3}}\) \(\qquad\mathrm{D}.\sqrt{7}\)
解析: 法一 矩形的性质 由题设$$(\boldsymbol{a},\boldsymbol{b},\boldsymbol{e})=\left( \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OE} \right)$$如图所示,
![](https://img2018.cnblogs.com/blog/1793042/201910/1793042-20191010225220069-637794437.png)
易知$EA\perp EB$,构造矩形$FAEB$,不妨固定$E$点,则由矩形性质可知$$ |OF|^2+|OE|^2=|OA|^2+|OB|^2.$$所以$F$点的轨迹方程为$$x^2+y^2=12.$$从而$|\boldsymbol{a}-\boldsymbol{b}|$,即$|AB|$,也即$|EF|$的最小值为$2\sqrt{3}-1$.法二 由题$$
|\boldsymbol{a}\cdot \boldsymbol{b}+1|=|\boldsymbol{e}\cdot\left(\boldsymbol{a}+\boldsymbol{b}\right)|\leqslant |\boldsymbol{a}+\boldsymbol{b}|.$$两边平方可得$$
\left(\boldsymbol{a}\cdot\boldsymbol{b}\right)^2+2\cdot\boldsymbol{a}\cdot\boldsymbol{b}+1\leqslant \boldsymbol{a}2+\boldsymbol{b}2+2\cdot \boldsymbol{a}\cdot\boldsymbol{b}. $$所以$$-2\sqrt3\leqslant \boldsymbol{a}\cdot \boldsymbol{b}\leqslant 2\sqrt{3}.$$因此$$
|\boldsymbol{a}-\boldsymbol{b}|=\sqrt{\boldsymbol{a}2+\boldsymbol{b}2-2\cdot \boldsymbol{a}\cdot \boldsymbol{b}}\geqslant \sqrt{13-4\sqrt{3}}=2\sqrt{3}-1.$$
当\(\boldsymbol{e}\)与\(\boldsymbol{a}+\boldsymbol{b}\)同向时取等.因此所求表达式的最小值为\(2\sqrt{3}-1\).