Processing math: 100%

Math521_刘雷

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: :: 管理 ::
  104 随笔 :: 0 文章 :: 2 评论 :: 18944 阅读
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

等边 ABC 中, AD,AEBAC 的三等分线, FAE 中点, 连接 BFAD 于点 G, 连接 GE, 求证: GD=DE.

解析:
法一 考虑选定一组边长作为"基底"', 设
(AD,BD,DE)=(x,y,z).

首先计算 GD, 直线 BFADE 的三边 AD,DE,EA 于点 G,B,F. 由梅涅劳斯定理可得
AGGDDBBEEFFA=1.
即有 AGGD=y+zy, 给等式两边加 1, 可得GD=y2y+zAD=yz2y+z.
接下来计算 DE, 在 ABE 中, 由角平分线定理可得BDDE=ABAE.
从而 DE=BDAEAB=BDADBC=yz2y+z. 显然 GD=DE, 证毕.
法二 如图, 过 DDHAE, AEDH=H.

AGFADH, EDHEBF. 设 ED:DB=λ, 则
AGGD=AFFH=EH+HFHF=EDDB+1=λ+1.()GD=ADλ+2, 又在 ADE 中由正弦定理可得 DE=ADsin20sin80.
因此原题等价于求证 ADλ+2=ADsin20sin80. 也即求证 λ=sin80sin202. 以下计算 λ 的值: λ=EDDB=EDADADDB=sin20sin80sin60sin20=sin60sin80=2sin10sin60sin20. 从而原题即证明 sin80sin202=2sin10sin60sin20, 此即$$
2\sin 10^\circ\sin 60^\circ =\sqrt{3}\sin 10^\circ=\cos 10^\circ -2\sin(30\circ-10\circ)=\sin 80^\circ-2\sin 20^\circ.$$证毕.
备注() 处, 计算 AGGD 的表达式时, 用梅氏(梅涅劳斯)定理可一步到位.

posted on   Math521_刘雷  阅读(301)  评论(0编辑  收藏  举报
编辑推荐:
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ASP.NET Core 模型验证消息的本地化新姿势
阅读排行:
· 开发的设计和重构,为开发效率服务
· 从零开始开发一个 MCP Server!
· Ai满嘴顺口溜,想考研?浪费我几个小时
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
点击右上角即可分享
微信分享提示