12-27问题

1、如图,一直椭圆\(C_1:\frac{x^2}{2}+y^2=1\),抛物线\(C_2:y^2=2px(p>0)\),点\(A\)是椭圆\(C_1\)与抛物线\(C_2\)的交点,过点\(A\)的直线\(l\)交椭圆\(C_1\)于点\(B\),交抛物线\(C_2\)\(M(B,M\)不同于\(A)\).

( Ⅰ )若\(p=\frac{1}{16}\),求抛物线\(C_2\)的焦点坐标;

( Ⅱ )若存在不过原点的直线\(l\)使\(M\)为线段\(AB\)的中点,求\(p\)得最大值.

:先设\(A(x_0,y_0)\)在椭圆上

\[\frac{x_0^2}{2}+y_0^2=1\tag{1} \]

再由\(A\)确定抛物线

\[y_0^2=2px_0\Rightarrow 2p=\frac{y_0^2}{x_0}\tag{2} \]

将抛物线以\(A\)为中心放大得到曲线\(C_3\),曲线上点\((x,y)\)满足

\[\left(\frac{y+y_0}{2}\right)^2=2p\left(\frac{x+x_0}{2}\right)\tag{3} \]

代入\((2)\)那么

\[\left(\frac{y+y_0}{2}\right)^2=\frac{y_0^2}{x_0}\left(\frac{x+x_0}{2}\right)\Rightarrow x=\frac{2x_0}{y_0^2}\left(\frac{y+y_0}{2}\right)^2-x_0=\frac{x_0}{2y_0^2}\left((y+y_0)^2-2y_0^2\right)\tag{4} \]

如下图所示,可调节\(A\)点位置,查看交点

\((4)\)\(x\)代入\(\frac{x^2}{2}+y^2=1\)中的\(x\),求解四次方程,即交点横坐标

\[\frac{1}{2}\left(\frac{x_0}{2y_0^2}\left((y+y_0)^2-2y_0^2\right)\right)^2+y^2=1\tag{5} \]

注意到\(\pm y_0\)为方程的解,代入\(\frac{x_0^2}{2}+y_0^2=1\),提取公因式\(y^2-y_0^2\)得到

\[(5)\Leftrightarrow (y^2-y_0^2)\left(\frac{x_0^2}{8y_0^4}(y+3y_0)(y+y_0)+1\right)=0\tag{6} \]

只需保证方程有实根

\[\frac{x_0^2}{8y_0^4}(y+3y_0)(y+y_0)+1=0\Leftrightarrow y^2+4y_0y+3y_0^2+\frac{8y_0^4}{x_0^2}=0\\ \Leftrightarrow \Delta = (4y_0)^2-4\left(3y_0^2+\frac{8y_0)^4}{x_0}\right)=\frac{4y_0^2}{x_0^2}\left(1-\frac{8y_0^2}{x_0^2}\right)>0\]

所以\(x_0^2>8y_0^2\),又\(x_0^2/2+y_0^2=1\),得到\(x_0^2>8(1-x_0^2/2)\)\(|x_0|>\frac{4}{\sqrt{10}}\)(另\(x_0<\sqrt{2}\)),\(x_0\in(\frac{4}{\sqrt{10}},\sqrt{2})\)
注意下式中\(p\)关于\(x_0\)为递减函数,所以

\[p=\frac{y_0^2}{2x_0}=\frac{1-\frac{x_0^2}{2}}{2x_0}=\frac{1}{4}\left(-x_0+\frac{2}{x_0}\right)\in(0,\frac{\sqrt{10}}{40}) \]

2、已知四棱锥\(P-ABCD\)所有棱长均为\(4\),点\(M\)是侧棱\(PC\)上的一个动点(不与\(P,C\))重合,若过点\(M\)且垂直于\(PC\)的截面将该四棱锥分为两部分。

结论:

  1. 截面的形状仅能为三角形、五边形
  2. 截面与底面所成锐二面角为\(\pi/4\)
  3. \(PM=1\)时,截面积为\(5\sqrt{2}\)
  4. \(PM=2\)时,界面分成的两个几何体体积比为\(3:1\)
  5. PA为截面法线,\(PA\perp PC\)\(PB\perp PD\)
posted @ 2020-12-27 22:35  Math&Nav  阅读(119)  评论(0编辑  收藏  举报