一类积分

(1)

\[\sum_{k=1}^n \frac{(-1)^k}{k}\binom{n}{k} =\sum_{k=1}^n(-1)^k\binom{n}{k}\int_0^1 x^{k-1}\text{d}x =-\int_0^1\sum_{k=1}^n \binom{n}{k}(-x)^{k-1}\text{d}x =\int_0^1\frac{1-(1-x)^n}{-x}\text{d}x=-\int_0^1\frac{1-x^n}{1-x} =-\int_0^1\sum_{k=1}^n x^{k-1}\text{d}x=-\sum_{k=1}^n \frac{1}{k}\]

posted @ 2020-08-07 07:49  Math&Nav  阅读(244)  评论(0编辑  收藏  举报