JTX发的一道题

题目

Geogebra作图

证明:

作出完全四边形ABECFD的密克尔点G,连接OG,作EF中点M,过点O作LA垂线并交于点N;
\(\angle OLN=\alpha,\angle FLP=\beta,\angle ALF=\gamma\)

\(先证明G在EF上且OG\bot EF\)

\[\angle EGC+\angle EGF=\angle ABC+\angle ADC=180^\circ \]

\[OE^2-OF^2=EB\cdot EA-FD\cdot FA=EG\cdot EF-FG\cdot FE=EG^2-FG^2 \]

设圆\(O\)半径为\(r\)

\[OG^2=OE^2-EG^2=EG\cdot EF+r^2-EG^2=EG\cdot FG+r^2 \]

计算点\(L\)对圆\(O\)的幂

\[\begin{align} &LA\cdot(2LN-LA)=OL^2-r^2=OG^2+GL^2-r^2\\ \Leftrightarrow &2LA\cdot LN-LA^2=OG^2+LG^2-r^2 \\\Leftrightarrow &2LA\cdot LN=LA^2+EG\cdot FG+r^2+LG^2-r^2=LM\cdot LG \end{align}\]

即点ANGM四点共圆

\[\begin{align} 0&=LN\cdot LA-LG\cdot LM\\ &=OL \cos\alpha\cdot PL \cos(\gamma-\beta)-OL\cos(\gamma-\alpha)\cdot PL\cos\beta\\ &=OL\cdot PL (\cos\alpha\cos(\gamma-\beta)-cos\beta\cos(\gamma-\alpha))\\ &=OL\cdot PL \sin\gamma \sin(\beta-\alpha) \end{align}\]

即证\(\alpha=\beta\)

posted @ 2020-07-29 11:59  Math&Nav  阅读(290)  评论(0)    收藏  举报