JTX发的一道题
题目
Geogebra作图
证明:
作出完全四边形ABECFD的密克尔点G,连接OG,作EF中点M,过点O作LA垂线并交于点N;
设\(\angle OLN=\alpha,\angle FLP=\beta,\angle ALF=\gamma\)
\(先证明G在EF上且OG\bot EF\)
\[\angle EGC+\angle EGF=\angle ABC+\angle ADC=180^\circ
\]
\[OE^2-OF^2=EB\cdot EA-FD\cdot FA=EG\cdot EF-FG\cdot FE=EG^2-FG^2
\]
设圆\(O\)半径为\(r\)
\[OG^2=OE^2-EG^2=EG\cdot EF+r^2-EG^2=EG\cdot FG+r^2
\]
计算点\(L\)对圆\(O\)的幂
\[\begin{align}
&LA\cdot(2LN-LA)=OL^2-r^2=OG^2+GL^2-r^2\\
\Leftrightarrow &2LA\cdot LN-LA^2=OG^2+LG^2-r^2
\\\Leftrightarrow &2LA\cdot LN=LA^2+EG\cdot FG+r^2+LG^2-r^2=LM\cdot LG
\end{align}\]
即点ANGM四点共圆
\[\begin{align}
0&=LN\cdot LA-LG\cdot LM\\
&=OL \cos\alpha\cdot PL \cos(\gamma-\beta)-OL\cos(\gamma-\alpha)\cdot PL\cos\beta\\
&=OL\cdot PL (\cos\alpha\cos(\gamma-\beta)-cos\beta\cos(\gamma-\alpha))\\
&=OL\cdot PL \sin\gamma \sin(\beta-\alpha)
\end{align}\]
即证\(\alpha=\beta\)