【codeforces 235E】 Number Challenge
http://codeforces.com/problemset/problem/235/E (题目链接)
题意
给出${a,b,c}$,求${\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)}$
extra
有这样一个公式,就是约数个数和那道题的推广吧。$${\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[gcd(i,j)=gcd(i,k)=gcd(j,k)=1]\lfloor\frac{a}{i}\rfloor\lfloor\frac{b}{j}\rfloor\lfloor\frac{c}{k}\rfloor}$$
然并卵,这个式子我不会证也不会用。。还是直接推吧。
Solution
莫比乌斯反演。
\begin{aligned} \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)=\sum_{i=1}^{ab}f(i)\sum_{j=1}^cd(ij) \end{aligned}
其中${f(n)=\sum_{i=1}^a\sum_{j=1}^b[ab=n]}$。
\begin{aligned} & \sum_{i=1}^{ab}f(i)\sum_{j=1}^cd(ij) \\ =&\sum_{i=1}^{ab}f(i)\sum_{j=1}^c\sum_{u|i}\sum_{v|j}[gcd(u,v)=1] \\ =&\sum_{u=1}^{ab}\sum_{v=1}^c[gcd(u,v)=1]\sum_{i=1}^{\lfloor{ab/u}\rfloor}f(iu)\lfloor\frac{c}{v}\rfloor \end{aligned}
我们令${S(n)=\sum_{i=1}^{\lfloor{ab/n}\rfloor}f(in)}$,并把变量${u,v}$换成${i,j}$,因为${u,v}$看起来太丑了→_→。
\begin{aligned} & \sum_{i=1}^{ab}\sum_{j=1}^c[gcd(i,j)=1]S(i)\lfloor\frac{c}{j}\rfloor \\ =&\sum_{i=1}^{ab}\sum_{j=1}^c\sum_{t|i,t|j}μ(t)S(i)\lfloor\frac{c}{j}\rfloor \\ =&\sum_{t=1}^cμ(t)\sum_{i=1}^{\lfloor{ab/t}\rfloor}S(it)\sum_{j=1}^{\lfloor{c/t}\rfloor}\lfloor\frac{c}{jt}\rfloor \end{aligned}
看到这个式子是不是感到了满满的套路,我们故技重施,令${P(n)=\sum_{i=1}^{\lfloor{ab/n}\rfloor}S(in)}$,${Q(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor}$
\begin{aligned} \sum_{t=1}^cμ(t)P(t)Q(\lfloor\frac{c}{t}\rfloor) \end{aligned}
这样,我们${O(ab)}$的求出${f}$,之后按顺序${O(ab\log ab)}$的求出${S}$和${P}$,然后${O(c^2)}$的求出${Q}$,当然如果想分段也可以分段。最后只需要从${1}$枚举到${c}$就可以得出答案了。
细节
时限卡得有点紧,你需要常数优化→_→
代码
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #include<queue> #define LL long long #define inf 2147483640 #define MOD (1ll<<30) #define Pi acos(-1.0) #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout); using namespace std; const int maxn=4000010,maxm=2010; LL s[maxn],f[maxn],P[maxm],Q[maxm]; int a,b,c,p[maxm],vis[maxm],mu[maxm]; void inc(LL &a,LL b) { a+=b;if (a>MOD) a-=MOD; } int main() { scanf("%d%d%d",&a,&b,&c); mu[1]=1; for (int i=2;i<=c;i++) { if (!vis[i]) p[++p[0]]=i,mu[i]=-1; for (int j=1;j<=p[0] && i*p[j]<=c;j++) { vis[i*p[j]]=1; if (i%p[j]==0) {mu[i*p[j]]=0;break;} else mu[i*p[j]]=-mu[i]; } } for (int i=1;i<=a;i++) for (int j=1;j<=b;j++) f[i*j]++; for (int i=1;i<=a*b;i++) for (int j=1;j<=a*b/i;j++) inc(s[i],f[i*j]); for (int i=1;i<=c;i++) for (int j=1;j<=a*b/i;j++) inc(P[i],s[i*j]); for (int i=1;i<=c;i++) for (int j=1;j<=i;j++) inc(Q[i],i/j); LL ans=0; for (int i=1;i<=c;i++) ans=(ans+mu[i]*P[i]*Q[c/i]%MOD)%MOD; printf("%lld",(ans+MOD)%MOD); return 0; }