【poj2699】 The Maximum Number of Strong Kings

http://poj.org/problem?id=2699 (题目链接)

题意

  给出1张有向完全图。U->V表示U可以打败V并得一分。如果一个人的得分最高,或者他打败所有比自己得分高的人,那么此人就是king。现在按顺序给出每个人的得分,求最多可能有多少个king同时存在。

Solution

  想了半天贪心,然而得分相等的情况真的很不好处理。。真的没想到是最大流。。左转题解:http://blog.csdn.net/sdj222555/article/details/7797257

  考虑这样建图的正确性。

  借用题解的example,假设序列长成这样:1....i......n。那么i不是king有以下这几种情况

  1.i的得分少于得分比它大的人的个数

  这种情况显然i不可能赢所有得分比它大的人,那么这如何在我们所构建的图上体现呢?

  对于i与得分比i大的人的比赛,从i连向它们,显然,这些边不可能满流,因为i不可能赢这么多场,于是不成立。

  2.n已经无法给予i赢的机会

  因为得分比i大的人想要成为King,必须赢得得分比他们更大的人n,而n能够输的场次是有限的。

  如果从i连向(i,n)的比赛使i强行赢得胜利,会使得边(s,n)不满流,于是不成立。

  也许还有别的情况我没考虑到,唉最近思维僵化,没救了,如果有补充请提出╮(╯_╰)╭

细节

  多组数据注意初始化,为什么我还是要16ms。。自带常数。。

代码

// poj2699
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;

const int maxn=1010;
struct edge {int to,next,w;}e[maxn];
int head[maxn],d[maxn],f[20][20],a[maxn],Max;
int n,m,ans,cnt=1,es,et;
char ch[maxn];

void link(int u,int v,int w) {
	e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
	e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void read() {
	gets(ch);
	n=m=Max=0;int l=strlen(ch);
	for (int i=0;i<l;i++) if (ch[i]>='0' && ch[i]<='9') {
			m=m*10+ch[i]-'0';
			if (i==l || ch[i+1]<'0' || ch[i+1]>'9') a[++n]=m,m=0,Max=max(Max,a[n]);
		}
	for (int i=1;i<=n;i++)
		for (int j=i+1;j<=n;j++) f[i][j]=f[j][i]=++m;
	es=n+m+1;et=es+1;
}
void Init() {
	cnt=ans=0;
	memset(head,0,sizeof(head));
}
bool bfs() {
	memset(d,-1,sizeof(d));
	queue<int> q;q.push(es);d[es]=0;
	while (!q.empty()) {
		int x=q.front();q.pop();
		for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
				d[e[i].to]=d[x]+1;
				q.push(e[i].to);
			}
	}
	return d[et]>0;
}
int dfs(int x,int f) {
	if (x==et || f==0) return f;
	int used=0,w;
	for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
			w=dfs(e[i].to,min(e[i].w,f-used));
			used+=w;
			e[i].w-=w;e[i^1].w+=w;
			if (used==f) return used;
		}
	if (!used) d[x]=-1;
	return used;
}
void Dinic() {
	while (bfs()) ans+=dfs(es,inf);
}
int main() {
	int T;scanf("%d",&T);getchar();
	while (T--) {
		read();
		for (int s=1;s<=n;s++) {
			Init();
			for (int i=1;i<=n;i++) link(es,i,a[i]);
			for (int i=1;i<s;i++)
				for (int j=i+1;j<=n;j++) link(i,f[i][j]+n,1),link(j,f[i][j]+n,1);
			for (int i=s;i<=n;i++)
				for (int j=i+1;j<=n;j++) {
					link(i,f[i][j]+n,1);
					if (a[i]==Max) link(j,f[i][j]+n,1);
				}
			for (int i=n+1;i<=n+m;i++) link(i,et,1);
			Dinic();
			if (ans==m) {printf("%d\n",n-s+1);break;}
		}
	}
	return 0;
}

  

posted @ 2016-12-23 21:09  MashiroSky  阅读(204)  评论(1编辑  收藏  举报