【bzoj3675】 Apio2014—序列分割

http://www.lydsy.com/JudgeOnline/problem.php?id=3675 (题目链接)

题意

  给出一个包含n个非负整数的序列,要求将其分割成k+1个序列,每次分割可以获得一定的分数,分数=序列分割位置左侧的数之和×序列分割位置右侧的数之和。要求最大分数是多少。

Solution

  稍加分析,发现其实最后得到的分数与分割的先后顺序无关,这个问题卡了我好久,我还是太辣鸡了→_→。发现最后得到的分数=序列1的数字之和×序列2的数字之和×·····×序列k+1的数字之和。

  那么我们可以列出dp方程:${f[x][i]=max(f[x][i],f[x-1][j]+s[j]×(s[i]-s[j]))}$。其中${f[x][i]}$表示将区间${[1,i]}$的序列分割成当${x}$块所得到的最大分数,${s[i]}$表示${1~i}$的前缀和。可是这样的话复杂度就是${O(n*n*k)}$的了,所以我们需要斜率优化。

  最后斜率式长这样:

$${\frac{f[j]-f[k]+s[k]^2-s[j]^2}{s[k]-s[j]}<s[i]}$$

  所以当q[l]与q[l+1]满足上式时,就pop掉q[l]。

细节

  注意f,s数组开long long,斜率的分母${s[k]-s[j]}$可能为0。

代码

// bzoj3675
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483600
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;

const int maxn=100010;
LL s[maxn],f[2][maxn];
int a[maxn],q[maxn],n,m;

double K(int k,int a,int b) {
	return s[b]-s[a]==0 ? 0 : (double)(f[k][a]-f[k][b]-s[a]*s[a]+s[b]*s[b])/(double)(s[b]-s[a]);
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	int x=0;
	for (int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
	for (int k=1;k<=m;k++) {
		x^=1;
		int l=1,r=1;q[1]=k-1;
		for (int i=k;i<=n;i++) {
			while (l<r && K(x^1,q[l],q[l+1])<s[i]) l++;
			f[x][i]=f[x^1][q[l]]+s[q[l]]*(s[i]-s[q[l]]);
			while (l<r && K(x^1,q[r-1],q[r])>K(x^1,q[r],i)) r--;
			q[++r]=i;
		}
	}
	printf("%lld",f[x][n]);
    return 0;
}

  

posted @ 2016-10-19 20:19  MashiroSky  阅读(309)  评论(0编辑  收藏  举报