机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法

  朴素贝叶斯

  优点:在数据较少的情况下仍然有效,可以处理多类别问题

  缺点:对于输入数据的准备方式较为敏感

  适用数据类型:标称型数据

  贝叶斯决策理论的核心思想:选择具有最高概率的决策。

4.2 条件概率

4.3 使用条件概率来分类

4.4 使用朴素贝叶斯进行文档分类

  朴素贝叶斯的一般过程:

  1.收集数据

  2.准备数据

  3.分析数据

  4.训练算法

  5.测试算法

  6.使用算法

  朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

4.5 使用Python进行文本分类

4.5.1 准备数据:从文本中构建词向量

  建立bayes.py文件

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec
                 
def createVocabList(dataSet): 
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec
import bayes
listOPosts,listClasses=bayes.loadDataSet() #
myVocabList=bayes.createVocabList(listOPosts)
bayes.setOfWords2Vec(myVocabList,listOPosts[0])
bayes.setOfWords2Vec(myVocabList,listOPosts[3])

4.5.2 训练算法,从词向量计算概率

  改写贝叶斯,使用以下公式:

  

  w为向量,p(w|ci)可以展开为p(w0,w1...wN|ci),假设所有词相互独立 ,那么该假设也称作条件独立性假设,这表示可以使用p(w0|ci)p(w1|ci)...p(wn|ci)计算上述概率。

  该函数伪代码如下:

  计算每个类别中的文档数目

  对每篇训练文档:

    对每个类别:

      如果词条出现在文档中->增加该词条的计数值

      增加所有词条的计数值

    对每个类别:

      对每个词条:

        将该词条的数目除以总词条数目得到条件概率

    返回每个类别的条件概率  

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = zeros(numWords); p1Num = zeros(numWords)      #change to ones() 
    p0Denom = 0.0; p1Denom = 0.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom          #change to log()
    p0Vect = p0Num/p0Denom          #change to log()
    return p0Vect,p1Vect,pAbusive
trainMat=[]
for postinDoc in listOPosts:
    trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb=bayes.trainNB0(trainMat,listClasses)

4.5.3 测试算法:根据现实情况修改分类器

  利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算p(w0|1)p(w1|1)...,如果其中一个概率值为0,那么最后乘积也为0。为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2.

  修改TrainNB0()  

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom          #change to log()
    p0Vect = p0Num/p0Denom          #change to log()
    return p0Vect,p1Vect,pAbusive

  另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算p(w0|1)p(w1|1)...时,由于大部分因子都很小,所以程序会下溢出或得到不正确的答案。一种解决办法是对乘积取自然对数。在代数中有ln(a*b)=ln(a)+ln(b),于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。因此,修改TrainNB0

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive

  编写分类函数

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
    
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
bayes.testingNB()

4.5.4 准备数据:文档词袋模型

  词集模型:每个词出现一次。

  词袋模型:每个词在文档中出现不止一次。

  把setOfWords2Vec()改为bagOfWords2Vec()

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

4.6 使用朴素贝叶斯过滤垃圾邮件

  1.收集数据:提供文本文件

  2.准备数据:将文本文件解析成词条向量

  3.分析数据:检查词条确保解析的正确性

  4.训练算法:使用我们之前建立的trainNB0()函数

  5.测试算法:使用classifyNB(),并且构建一个新的测试函数来计算文档集的错误率

  6.使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上

4.6.1 准备数据:切分文本

4.6.2 测试算法:使用朴素贝叶斯进行交叉验证

  

def textParse(bigString):    #input is big string, #output is word list
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 
    
def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print 'the error rate is: ',float(errorCount)/len(testSet)
    #return vocabList,fullText

  以上程序,随机选择10篇作测试集,如果全部判对输出错误率0.0,若有错误则输出错分文档的词表。

4.7 未完成

  

posted @ 2016-02-06 18:01  地表最强队队员  阅读(760)  评论(0编辑  收藏  举报