差分隐私(Differential Privacy)定义及其理解
1 前置知识
本部分只对相关概念做服务于差分隐私介绍的简单介绍,并非细致全面的介绍。
1.1 随机化算法
随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布。
单纯形(simplex):一个维单纯形是指包含个顶点的凸多面体,一维单纯形是一条线段,二维单纯形是一个三角形,三维单纯形是一个四面体,以此类推推广到任意维。“单纯”意味着基本,是组成更复杂结构的基本构件。
概率单纯形(probability simplex):是一个数学空间,上面每个点代表有限个互斥事件之间的概率分布。该空间的每条坐标轴代表一个互斥事件,维单纯形上的每个点在维空间中的坐标就是其个互斥事件上的概率分布。每一点的坐标(向量)包含个元素,各元素非负且和为1。
如下图所示,三个事件发生的概率分布形成一个二维的概率单纯形,上面每个点在三个事件上发生的概率之和为1。
形式化定义:给定一个离散集,上的概率单纯形被定义为
是一个集合,集合中每一个元素是一个维向量,该向量代表了一个离散型随机变量的概率分布。代表了一个有种取值的离散型随机变量的所有可能的概率分布。
随机化算法(randomized algorithm):一个随机化算法有定义域、离散的值域。一个输入,算法的输出是一个随机变量,服从概率分布,并且。
例如,,,设中包含三个元素,分别为、、,即
每个元素均代表算法输出的随机变量取值为1,2,3,4,5的概率分布,现可以规定映射为
也就是说,一个特定输入经过随机化算法得到的不是一个具体值,而是一个随机变量,又或者说,算法将以一定概率输出某一个值。
上述情况是在离散概率空间中讨论的,有时,算法将从连续分布中的采样,但最后将以适当的精度进行离散化。
1.2 KL散度(KL-Divergence)
KL散度(Kullback Leible-Divergence)概念来源于概率论与信息论,又被称作相对熵、互熵。从统计学意义上来说,KL散度可以用来衡量两个分布之间的差异程度,差异越小,KL散度越小。
熵(entropy):信息论中熵定义首次被香农提出:无损编码事件信息的最小平均编码长度。通俗理解,如果熵比较大,即对该信息进行编码的最小平均编码长度较长,意味着该信息具有较多可能的状态,即有着较大的信息量/混乱程度/不确定性。从某种角度上看,熵描述了一个概率分布的不确定性。
一个离散的随机变量可能取值为,即取值空间为,概率分布律为,则随机变量的熵定义为
规定当时,。
其中,表示状态的最小编码长度。
也即,表示事件发生的概率,只是书写习惯不同,避免与其他混淆。
有时也将上面的量记为;
公式中的表示使用概率分布来计算期望;
其中以2为底时,熵单位为bit,以e为底时,熵单位为nat;
上述的对熵的讨论也只是针对离散随机变量进行讨论的,在离散型随机变量中为概率分布律,在连续型随机变量中为概率密度函数;
交叉熵(cross-entropy):熵的计算是已知各状态的概率分布求其理论上最小平均编码长度。如果不知道各状态真实的概率分布,只有预估的概率分布,我们只好根据预估的概率分布给事件编码,得到事件各状态的预估最小编码长度。假如经过观测后我们得到了真实概率分布,那么在计算预估最小编码长度的期望时就可以采用真实概率分布,得到交叉熵。
对于同一取值空间下的离散随机变量,概率分布分别为,交叉熵定义为
即用预估概率分布计算每个状态的最小编码长度,用真实概率分布求期望。可见,。
上述定义也可写作:对于取值空间的离散随机变量,有两个分布,这也是《信息论基础(原书第二版)》的表达方式;但考虑到一个随机变量对应一个分布更严谨些,便分成了同一取值空间的两个随机变量进行解释,这是《The Algorithmic Foundations of Differential Privacy》的表达方式。二者意思是一样的。
相对熵(relative entropy)/KL散度(KL-divergence):用来衡量交叉熵与熵之间的差距的,也是两个随机分布之间距离的度量。
对于同一取值空间下的离散随机变量,概率分布分别为,则相对的相对熵为:
可见,KL散度也可以用来衡量两个分布的差异程度,另外,。
最大散度(Max Divergence):KL散度是从整体上衡量两个分布的距离,最大散度是两个分布比值的最大值,从两个分布比值的最大值角度衡量了两个分布的差异。
对于同一取值空间下的离散随机变量,概率分布分别为,最大散度为
2 差分隐私定义
差分隐私是Dwork在2006年首次提出的一种隐私定义,函数的输出结果对数据集中任何特定记录都不敏感。
假设对于一个考试成绩数据集,通过查询操作得知有个同学不及格,现加入一条新纪录得到新数据集,通过查询得知有个同学不及格,便可推理出新加入的同学成绩不及格,如此一来,攻击者便通过这样的手段推理出了一些知识。
应对上述攻击,差分隐私通过往查询结果中加入随机噪声最终得到查询结果,使得与经过同一查询后的结果并非确定的具体值,而是服从两个很接近的概率分布,这样攻击者无法辨别查询结果来自哪一个数据集,保障了个体级别的隐私性。
2.1 形式化定义
邻接数据集(neighbor datasets):仅有一条记录不同的两个数据集,。
随机化算法:随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布。
隐私预算(privacy budget):用于控制算法的隐私保护程度,越小,则算法保护效果越好。
隐私损失(privacy loss):对于任意的输出结果,或,其描述了算法在邻接数据集上输出同一个值的概率差别大小,差分隐私机制将算法的隐私损失控制在一个有限范围内。
隐私损失可正可负,越正和越负都表示隐私损失很大,因此严格来说隐私损失应加个绝对值,为
当然,如没有加绝对值的地方默认。
差分隐私:对于只有一个记录不同的邻接数据集、,给这两个数据集施加一个随机化算法(机制),对于所有的,若有
即
成立,则称算法满足差分隐私。
其中是随机算法映射结果随机变量的取值空间,是其子集;对于所有的即对于的所有子集。
另种写法:
即
差分隐私:上面描述的是严格的差分隐私的定义,为了算法的实用性,Dwork后面引入了松弛的差分隐私,加入一个小常数(称作失败概率):
2.2 该定义是如何得来的
差分隐私的目的是使的分布尽可能接近,便可用Max Divergence衡量两个分布的差异:
其中,是随机算法映射结果随机变量的取值空间,是其子集。
对于的所有子集,即对于任意的,两个分布的差异都被限制在隐私预算以内:
可见,上述的Max Divergence就是隐私损失。
取的底为,并两边同时利用指数运算、乘以分母变形得:
或
3 差分隐私中常用的随机化算法(机制)
常用的随机化机制有:
- 拉普拉斯机制(Laplace mechanism)
- 指数机制(Exponential mechanism)
- 高斯机制(Gaussian mechanism)
这些机制中,噪声发现取决于算法的敏感度。
敏感度(sensitivity):对于只有一个记录不同的两个数据集,对于一个函数,则的敏感度为接收所有可能的输入后,得到输出的最大变化值:
其中,表示向量的范数。敏感度和敏感度分别适用于范数和范数。
参考资料:
- 概率单纯形 https://zhuanlan.zhihu.com/p/479892005
- 【数学知识】KL散度 https://zhuanlan.zhihu.com/p/365400000
- 一文搞懂熵(Entropy),交叉熵(Cross-Entropy) https://zhuanlan.zhihu.com/p/149186719
- 差分隐私Differential Privacy介绍 https://zhuanlan.zhihu.com/p/40760105
- 差分隐私(一) Differential Privacy 简介 https://zhuanlan.zhihu.com/p/139114240
- 差分隐私的算法基础 第二章 第三节 形式化差分隐私 https://zhuanlan.zhihu.com/p/502656652
- 《联邦学习》杨强.et al 电子工业出版社
- 机器学习的隐私保护研究综述. 刘俊旭 孟小峰 doi: 10.7544/issn1000-1239.2020.20190455
- 《The Algorithmic Foundations of Differential Privacy》Dwork.et al 3.5.1
- 《信息论基础(原书第2版)》Thomas.et al 机械工业出版社
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)