随机化算法
随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布。
单纯形(simplex):一个\(k\)维单纯形是指包含\(k+1\)个顶点的凸多面体,一维单纯形是一条线段,二维单纯形是一个三角形,三维单纯形是一个四面体,以此类推推广到任意维。“单纯”意味着基本,是组成更复杂结构的基本构件。
概率单纯形(probability simplex):是一个数学空间,上面每个点代表有限个互斥事件之间的概率分布。该空间的每条坐标轴代表一个互斥事件,\(k-1\)维单纯形上的每个点在\(k\)维空间中的坐标就是其\(k\)个互斥事件上的概率分布。每一点的坐标(向量)包含\(k\)个元素,各元素非负且和为1。
如下图所示,三个事件发生的概率分布形成一个二维的概率单纯形,上面每个点在三个事件上发生的概率之和为1。
形式化定义:给定一个离散集\(B\),\(B\)上的概率单纯形\(\Delta(B)\)被定义为
\(\Delta(B)\)是一个集合,集合中每一个元素是一个\(|B|\)维向量,该向量代表了一个离散型随机变量的概率分布。\(\Delta(B)\)代表了一个有\(|B|\)种取值的离散型随机变量的所有可能的概率分布。
随机化算法:一个随机化算法\(\cal{M}\)有定义域\(A\)、离散的值域\(B\)和一个映射\(\mathcal{M}:A\rightarrow \Delta(B)\)。一个输入\(a\in A\),算法\(\cal{M}\)的输出\(\mathcal{M}(a)\in \Delta(B)\)。
例如,\(A=\{2,3,4\}\),\(B=\{1,2,3,4,5\}\),设\(\Delta(B)\)中包含三个元素,分别为\((\frac{1}{3},\frac{1}{3},\frac{1}{3},0,0)\)、\((0,\frac{1}{3},\frac{1}{3},\frac{1}{3},0)\)、\((0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3})\),即
每个元素均代表算法输出的随机变量取值为1,2,3,4,5的概率分布,现可以规定映射\(\cal{M}\)为
也就是说,一个特定输入\(a\in A\)经过随机化算法\(\cal{M}\)得到的不是一个具体值\(b\in B\),而是一个分布\(\mathcal{M}(a)\in \Delta(B)\),又或者说,算法将以一定概率输出某一个值。
上述情况是在离散概率空间中讨论的,有时,算法将从连续分布中的采样,但最后将以适当的精度进行离散化。
参考资料:
- 概率单纯形 https://zhuanlan.zhihu.com/p/479892005
- 差分隐私的算法基础 第二章 第三节 形式化差分隐私 https://zhuanlan.zhihu.com/p/502656652