# -*- coding: utf-8 -*- """ Created on Thu May 3 16:51:50 2018 """ # 录像转换为图片 from time import gmtime, strftime import cv2 import numpy as np def rotate(image, angle, center=None, scale=1.0): # 获取图像尺寸 (h, w) = image.shape[:2] # 若未指定旋转中心,则将图像中心设为旋转中心 if center is None: center = (w / 2, h / 2) # 执行旋转 M = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, M, (w, h)) # 返回旋转后的图像 return rotated videoFile = 'py5.mp4' cap = cv2.VideoCapture(videoFile) numF=cap.get(cv2.CAP_PROP_FRAME_COUNT) fps=cap.get(cv2.CAP_PROP_FPS) #cap.set(cv2.CAP_PROP_FRAME_WIDTH,640) #cap.set(cv2.CAP_PROP_FRAME_HEIGHT,480) while(True): ret, frame = cap.read() if ret ==True: img = frame #img=rotate(frame,-90) #img=np.rot90(frame) #img=np.rot90(img) #img=np.rot90(img) cv2.imshow('my', img) # 肤色检测之一: YCrCb之Cr分量 + OTSU二值化 # img= cv2.imread('YCbCr OR.jpg', cv2.IMREAD_COLOR) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域 (y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道图像 # 高斯滤波, cr 是待滤波的源图像数据, (5,5)是值窗口大小, 0 是指根据窗口大小来计算高斯函数标准差 cr1 = cv2.GaussianBlur(cr, (5, 5), 0) # 对cr通道分量进行高斯滤波 # 根据OTSU算法求图像阈值, 对图像进行二值化 #_, skin1 = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) _, skin1 = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #cv2.imshow("image CR", cr1) # cv2.imshow("Skin Cr+OSTU", skin1 ) # img0 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将图片转换为灰度图片 f = strftime("%Y%m%d%H%M%S.jpg", gmtime()) cv2.imwrite('2/'+ f, skin1) #if img.size == 0: # break if cv2.waitKey(200) & 0xFF == ord('q'): break cap.release cv2.destroyAllWindows()