AtCoder Beginner Contest 185

题解

A - ABC Preparation

传送门
解题思路:输出最小的数就行
Code

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int a[4];
	for(int i = 0;i < 4; ++i) {
		scanf("%d",&a[i]);
	}
	sort(a,a+4);
	printf("%d\n",a[0]);
	return 0;
}

 

B - Smartphone Addiction(模拟)

传送门
解题思路:因为题目保证时间是从小到大的,那么我们直接对输入的时间进行模拟,如果某个时间段没电了直接输出No,然后return 0;就行,否则循环结束,输出Yes,注意最后要到达第t的时间,还有出门的时间为0,我们可以把这两个时间分别放在去各个cafe馆的时间的后面和前面,详情请看Code
Code:

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1005;

struct Node {
	int a,b;
}A[N];
int n,m,t;

signed main()
{
	scanf("%lld%lld%lld",&n,&m,&t);
	int fg = 0;
	int cnt = n;
 	for(int i = 1; i <= m; ++i) {
		scanf("%lld%lld",&A[i].a,&A[i].b);
 	}
 	A[0].a = A[0].b = 0;
 	A[m+1].a = t;
 	A[m+1].b = t;
	for(int i = 0;i <= m; ++i) {
		int add = A[i].b - A[i].a;
		n += add;
		n = min(n,cnt);
		int dis = A[i+1].a -A[i].b;
		n -= dis;
		if(n<=0) {
			puts("No");
			return 0;
		}
	}
	puts("Yes");
	return 0;
}

 

C - Duodecim Ferra(DP/组合数学)

传送门
解题思路:一个长度为L的木棍,把它分为11段,每一段都是不一样的,所以L为13的时候有12种情况,很明显我们能的出分段的总情况数为\(C_{L-1}^{11}\),(组合数学大法好),当然也可以用DP做,DP[i][j]表示用i个整数凑成j的方案数,所以是计数DP,\(DP[i][j] += DP[i-1][i-k]\),但是注意因为是正整数,当j<i时,显然方案数为0,最后注意开long long
组合数学Code:

#include<bits/stdc++.h>
using namespace std;
#define ll long long

int main()
{
	ll L;
	ll ans = 1;
	scanf("%lld",&L);
	for(int i = 1;i < 12; ++i) {
		ans = ans*(L-i)/i;
	}
	printf("%lld\n",ans);
}

DPCode:

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

int l;
long long dp[20][205];

int main()
{
	scanf("%d",&l);
	dp[0][0] = 1;
	for(int i = 1;i <= 12; ++i) {
		for(int j = 1;j <= l; ++j) {
			for(int k = l;k >= max(j,i); --k) {
				dp[i][k] += dp[i - 1][k-j];
			}
		}
	}
	printf("%lld\n",dp[12][l]);
	return 0;
}

 

D - Stamp(差分)

传送门
解题思路:题目大概是说给你n个方格,将其中的m个图成蓝色,问你最少的宽度需要多少次操作将全部白色的地方图成有颜色。因为墙有n个,那么我们进行差分找到最小的非0的值,然后以这个值为最小的宽度,对墙进行染色,因为差分求出来的就是白墙的宽度,那么我们直接对差分数组进行遍历求得染色的次数,注意向上取整,因为结果只要是全部的白墙被染色就行,无论染成什么颜色都行
Code:

#include<bits/stdc++.h>
using namespace std;

const int N = 200005;
int a[N];
int b[N];

int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	if(!m) {
		puts("1");
	}
	else {
		for(int i = 1;i <= m; ++i) {
			scanf("%d",&a[i]);
		}
		a[0] = 0;
		a[m+1] = n+1;
		sort(a+1,a+m+2);
		for(int i = 1; i <= m + 1; ++i) {
			b[i] = a[i] - a[i-1] - 1;
			b[i] = max(0,b[i]);
		}
		sort(b+1,b+m+2);
		int j = 1;
		while(!b[j]) ++j;
		int len = b[j];
		int ans = 0;
		for(int i = 1;i <= m + 2; ++i) {
			ans += ceil(1.0*b[i]/len);
		}
		printf("%d\n",ans);
	}

	return 0;
}

 

E - Sequence Matching

传送门
没看懂样例,扎心了。
 

F - Range Xor Query(树状数组)

传送门
解题思路:标准的Bit数组,只不过变成了异或运算,我们只需要把树状数组的更新的时候变为^向上更新,然后求区间与异或值得时候,sum(r)^sum(l-1),因为sum(r)表示的是从a[1]^a[2]^……^a[r](好像打了个奇怪的表情?),sum(l-1)表示的是a[1]^a[2]^……^a[l-1],众所周知,相同的数进行异或值为0,0与任何数异或值为那个数。所以求区间异或值直接sum(r)^sum(l-1)表示求的[l,r]的异或值
Code:

#include<bits/stdc++.h>
using namespace std;
#define ll long long

const int N = 300005;
ll a[N],tree[N<<2];
int n,q;

int lowbit(int x) {
	return -x & x;
}

void updata(int loc,int x) {
	while(loc <= n) {
		tree[loc] ^= x;
		loc += lowbit(loc);
	}
}

ll get(int loc) {
	ll ans = 0;
	while(loc > 0) {
		ans ^= tree[loc];
		loc -= lowbit(loc);
	}
	return ans;
}

int main()
{

	scanf("%d%d",&n,&q);
	for(int i = 1; i <= n; ++i) {
		scanf("%lld",&a[i]);
		updata(i,a[i]);
	}
	int u,v,w;
	while(q--) {
		scanf("%d%d%d",&u,&v,&w);
		if(u == 1) {
			updata(v,w);
		}
		else {
			printf("%lld\n",get(w) ^ get(v-1));
		}
	}
	
	return 0;
}

 

小结

本场比赛难度偏简单,主要是偏思维一点,出了E没看懂其他题都能出(理论上),但是真正比赛的时候只出了A、B、D,三题,说明了我数学和DP方面还有待提升(好几次都死在组合数上,有空一定要学一手),还有被E卡住之后一直没开F,以为F更难,结果发现F是个板子题,下次被题目卡住10min以上就要跳,实在没得跳了再来看卡住的题。

posted @ 2020-12-20 01:08  MangataTS  阅读(158)  评论(0编辑  收藏  举报