AtCoder Beginner Contest 182B

B - Almost GCD

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 200 points

Problem Statement

Given is an integer sequence AA1,A2,A3,,AN.
Let the GCD-ness of a positive integer k be the number of elements among A1,A2,A3,…,AN that are divisible by k.
Among the integers greater than or equal to 2, find the integer with the greatest GCD-ness. If there are multiple such integers, you may print any of them.

Constraints

  • 1N100≤N≤100
  • 2Ai1000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N

A1A2A3AN

Output

Print an integer with the greatest GCD-ness among the integers greater than or equal to 22. If there are multiple such integers, any of them will be accepted.


Sample Input 1 

3

3 12 7

Sample Output 1 

3

Among 312, and 7, two of them - 3 and 12 - are divisible by 3, so the GCD-ness of 3 is 2.

No integer greater than or equal to 2 has greater GCD-ness, so 3 is a correct answer.


Sample Input 2 

5

8 9 18 90 72

Sample Output 2 

9

In this case, the GCD-ness of 9 is 4

2 and 3 also have the GCD-ness of 4, so you may also print 2 or 3.


Sample Input 3 

5

1000 1000 1000 1000 1000

Sample Output 3

1000

解题思路:拿到手,第一眼(没看题)看了输入的形式加上有个GCD我还以为要靠贝祖定理了呢,然后仔细分析是求一个K,K满足两个条件

①:K是输入的数组的元素的公因数,且从2开始。

②:k的倍数的数最多(当然这样的话就会有很多情况,随便输出一种情况就行)

 再一看数据,这么小直接二重循环暴力出来啦,外层循环从2开始,一直到1000,内次循环遍历数组,每次内存循环记录满足倍数条件的个数

Code:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
 
int a[1005];

int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d",&a[i]);
    }
    int max_ = 0,max_key = a[1],loc;
    for(int i = 2; i <= 1000; ++i) {
        loc = 0;//表示的是每次循环i的倍数的个数(当然是对a来说的)
        for(int j = 1; j <= n; ++ j) {
            if(a[j] % i == 0)
            loc++;
        }
        if(loc > max_) {//如果i的倍数比记录的大,就更新
            max_ = loc;
            max_key = i;
        }
    }
    printf("%d\n",max_key);
    return 0;
}

 

 开始以为k只能是a数组的元素,wa了很多发T^T

 

 

posted @ 2020-11-09 19:32  MangataTS  阅读(213)  评论(0编辑  收藏  举报