luogu 2698 [USACO12MAR]花盆Flowerpot
题目描述
Farmer John has been having trouble making his plants grow, and needs your help to water them properly. You are given the locations of N raindrops (1 <= N <= 100,000) in the 2D plane, where y represents vertical height of the drop, and x represents its location over a 1D number line:
Each drop falls downward (towards the x axis) at a rate of 1 unit per second. You would like to place Farmer John's flowerpot of width W somewhere along the x axis so that the difference in time between the first raindrop to hit the flowerpot and the last raindrop to hit the flowerpot is at least some amount D (so that the flowers in the pot receive plenty of water). A drop of water that lands just on the edge of the flowerpot counts as hitting the flowerpot.
Given the value of D and the locations of the N raindrops, please compute the minimum possible value of W.
老板需要你帮忙浇花。给出N滴水的坐标,y表示水滴的高度,x表示它下落到x轴的位置。
每滴水以每秒1个单位长度的速度下落。你需要把花盆放在x轴上的某个位置,使得从被花盆接着的第1滴水开始,到被花盆接着的最后1滴水结束,之间的时间差至少为D。
我们认为,只要水滴落到x轴上,与花盆的边沿对齐,就认为被接住。给出N滴水的坐标和D的大小,请算出最小的花盆的宽度W。
输入格式
第一行2个整数 N 和 D。
第2.. N+1行每行2个整数,表示水滴的坐标(x,y)。
输出格式
仅一行1个整数,表示最小的花盆的宽度。如果无法构造出足够宽的花盆,使得在D单位的时间接住满足要求的水滴,则输出-1。
输入输出样例
4 5 6 3 2 4 4 10 12 15
2
说明/提示
【样例解释】
有4滴水, (6,3), (2,4), (4,10), (12,15).水滴必须用至少5秒时间落入花盆。花盆的宽度为2是必须且足够的。把花盆放在x=4..6的位置,它可以接到1和3水滴, 之间的时间差为10-3 = 7满足条件。
【数据范围】
40%的数据:1 ≤ N ≤ 1000,1 ≤ D ≤ 2000;
100%的数据:1 ≤ N ≤ 100000,1 ≤ D ≤ 1000000,0≤x,y≤10^6。
分析
看数据范围,结合题意,求高度差大于等于d的最短距离
单调队列
枚举结束的点
用两个队列分别维护最大值与最小值
求差更新答案便好
代码
1 /************************** 2 User£ºMandy.H.Y 3 Language:c++ 4 Problem£º 5 **************************/ 6 7 #include<bits/stdc++.h> 8 9 using namespace std; 10 11 const int maxn = 1e5 + 5; 12 const int maxd = 1e6 + 5; 13 14 int n,d; 15 int l1,r1,q1[maxn]; 16 int l2,r2,q2[maxn]; 17 18 struct Node{ 19 int x,y; 20 }node[maxn]; 21 22 template<class T>inline void read(T &x){ 23 x = 0;bool flag = 0;char ch = getchar(); 24 while(!isdigit(ch)) flag |= ch == '-',ch = getchar(); 25 while(isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48),ch = getchar(); 26 if(flag) x = -x; 27 } 28 29 template<class T>void putch(const T x){ 30 if(x > 9) putch(x / 10); 31 putchar(x % 10 | 48); 32 } 33 34 template<class T>void put(const T x){ 35 if(x < 0) putchar('-'),putch(-x); 36 else putch(x); 37 } 38 39 void file(){ 40 freopen("1232.in","r",stdin); 41 freopen("1232.out","w",stdout); 42 } 43 44 bool cmp(const Node &a,const Node &b){ 45 return a.x < b.x; 46 } 47 48 void readdata(){ 49 read(n);read(d); 50 for(int i = 1;i <= n; ++ i){ 51 read(node[i].x); 52 read(node[i].y); 53 } 54 sort(node + 1,node + n + 1,cmp); 55 } 56 57 void work(){ 58 int ans = node[n].x + 100; 59 for(int i = 1;i <= n; ++ i){ 60 while(l1 < r1 && node[i].x-node[q1[l1]].x>=ans) l1++; 61 while(l2 < r2 && node[i].x-node[q2[l2]].x>=ans) l2++; 62 if(l1 < r1 && abs(node[i].y-node[q1[l1]].y) >= d) ans = min(ans,node[i].x-node[q1[l1]].x); 63 if(l2 < r2 && abs(node[i].y-node[q2[l2]].y) >= d) ans = min(ans,node[i].x-node[q2[l2]].x); 64 while(l1 < r1 && node[i].y < node[q1[r1-1]].y) r1--; 65 while(l2 < r2 && node[i].y < node[q2[r2-1]].y) r2--; 66 q1[r1++] = i; 67 q2[r2++] = i; 68 } 69 if(ans > node[n].x - node[1].x) puts("-1"); 70 else put(ans); 71 } 72 73 int main(){ 74 // file(); 75 readdata(); 76 work(); 77 return 0; 78 }