摘要:
目录概Noise contrastive estimation Mnih A. and Teh Y. W. A fast and simple algorithm for training neural probabilistic language models. ICML, 2012. 概 NCE 阅读全文
摘要:
目录概InstructRecInstruction Generation Zhang J., Xie R., Hou Y., Zhao W. X., Lin L., Wen J. Recommendation as instruction following: a large language mo 阅读全文
摘要:
目录概符号说明DeepWalk代码 Perozzi B., AI-Rfou R. and Skiena S. DeepWalk: Online learning of social representations. KDD, 2014. 概 经典的 graph embedding 学习方法. 符号说 阅读全文
摘要:
目录概符号说明MotivationFavardGNN代码 Guo Y. and Wei Z. Graph neural networks with learnable and optimal polynomial bases. ICML, 2023. 概 自动学多项式基的谱图神经网络. 符号说明 \ 阅读全文
摘要:
目录概符号说明MotivationNewtonNet代码 Xu J., Dai E., Luo D>, Zhang X. and Wang S. Learning graph filters for spectral gnns via newton interpolation. 2023. 概 令谱 阅读全文
摘要:
目录概符号说明DSF代码 Guo J., Huang K, Yi X. and Zhang R. Graph neural networks with diverse spectral filtering. WWW, 2023. 概 为每个结点赋予不同的多项式系数. 符号说明 \(\mathcal{ 阅读全文
摘要:
目录概符号说明MotivationChebNetII代码 He M., Wei Z. and Wen J. Convolutional neural networks on graphs with chebyshev approximation, revisited. NIPS, 2022. 概 作 阅读全文
摘要:
[TOC] Guo J., Du L, Chen X., Ma X., Fu Q., Han S., Zhang D. and Zhang Y. On manipulating signals of user-item graph: A jacobi polynomial-based graph c 阅读全文
摘要:
目录概符号说明Spectral GNNChoice of Basis for Polynomial FiltersJacobiConv代码 Wang X. and Zhang M. How powerful are spectral graph neural networks? ICML, 2022 阅读全文
摘要:
目录概ListNetPermutation ProbabilityTop-k ProbabilityListMLE Cao Z., Qin T., Liu T., Tsai M. and Li H. Learning to rank: from pairwise approach to listwi 阅读全文
摘要:
目录概符号说明GATv2代码 Brody S., Alon U. and Yahav E. How attentive are graph attention networks? ICLR, 2022. 概 作者发现了 GAT 的 attention 并不能够抓住边的重要性, 于是提出了 GATv2 阅读全文
摘要:
目录概符号说明Shadow-GNN代码 Zeng H., Zhang M., Xia Y., Srivastava A., Malevich A., Kannan R., Prasanna V., Jin L. and Chen R. Decoupling the depth and scope o 阅读全文
摘要:
目录概TallRec代码 Bao K., Zhang J., Zhang Y., Wang W., Feng F. and He X. TALLRec: An effective and efficient tuning framework to align large language model 阅读全文
摘要:
目录概MotivationMarked Temporal Point Process代码 Du N., Dai H., Trivedi R., Upadhyay U., Gomez-Rodriguze M. and Song L. Recurrent marked temporal point pr 阅读全文
摘要:
目录TPPEvolutionary point processesConditional intensity function [\(t\)]Conditional intensity function [\(t, \kappa\)]InferenceSimulationInverse Method 阅读全文
摘要:
目录概符号说明LLP代码 Guo Z., Shiao W., Zhang S., Liu Y., Chawla N. V., Shah N. and Zhao T. Linkless link prediction via relational distillation. ICML, 2023. 概 阅读全文
摘要:
目录概符号说明DistillGCNLocal Structure Preserving代码 Yang Y., Qiu J., Song M., Tao D. and Wang X. Distilling knowledge from graph convolutional networks. CVP 阅读全文
摘要:
目录概符号说明DKD代码 Zhao B., Cui Q., Song R., Qiu Y. and Liang J. Decoupled knowledge distillation. CVPR, 2022. 概 对普通的 KD (Knowledge Distillation) 损失解耦得到 Tar 阅读全文
摘要:
目录概符号说明AirGNN代码 Liu X., Ding J., Jin W., Xu H., Ma Y., Liu Z. and Tang J. Graph neural networks with adaptive residual. NIPS, 2021. 概 基于 UGNN 框架的一个更加鲁 阅读全文
摘要:
目录概 Ma Y., Liu X., Shah N. and Tang J. Is homophily a necessity for graph neural networks? ICLR, 2022. 概 探究 Homophily 假设 (即相互连接的结点相似) 对于 GCN 发挥效果是否是必须 阅读全文