摘要:
LeCun Y., Chopra S., Hadsell R., Ranzato M. & Huang F. A Tutorial on Energy-Based Learning. To appear in “Predicting Structured Data, 2006, 1: 0. 概 从能 阅读全文
摘要:
Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P. InfoGAN: Interpretable Representation Learning by Information Maximizing Generati 阅读全文
摘要:
Huang J., Smola A., Gretton A., Borgwardt K. & Scholkopf B. Correcting Sample Selection Bias by Unlabeled Data. NIPS, 2007. 概 MMD量化了两组数据是否来自同一个分布的可能性, 阅读全文
摘要:
Borgwardt K., Gretton A., Rasch M., Kriegel H., Schoikopf B., Smola A. Integrating structured biological data by Kernel Maximum Mean Discrepancy. 2006 阅读全文
摘要:
[Chen T. & Li L. Intriguing Properties of Contrastive Losses. arXiv preprint arXiv 2011.02803, 2020.] 概 普通的对比损失有一种广义的表示方法, 改变alignment和distribution项的权 阅读全文
摘要:
Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Ma 阅读全文
摘要:
Pang T., Yang X., Dong Y., Xu K., Su H., Zhu J. Boosting Adversarial Training with Hypersphere Embedding. arXiv preprint arXIv 2002.08619 概 在最后一层, 对we 阅读全文
摘要:
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples Gowal S., Qin C., Uesato J., Mann T. & Kohli P. Uncovering the 阅读全文
摘要:
Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Learning. In Advances in Neural Information Processing Systems, 2020. 概 这篇文章提出了对比学习 阅读全文
摘要:
Hinton G., Vinyals O. & Dean J. Distilling the Knowledge in a Neural Network. arXiv preprint arXiv 1503.02531 概 \[ q_1 = \frac{\exp(z_i/T)}{\sum_j \ex 阅读全文
摘要:
Tian Y., Sun C., Poole B., Krishnan D., Schmid C. & Isola P. What Makes for Good Views for Contrastive Learning? arXiv preprint arXiv 2005.10243, 2020 阅读全文
摘要:
Kang M., Park J. Contrastive Generative Adversarial Networks. arXiv preprint arXiv 2006.12681, 2020. 概 如何将对比损失和GAN结合在一起呢? 主要内容 还是老问题, 结合对比学习就是如何构造正负样本 阅读全文