上一页 1 ··· 19 20 21 22 23 24 25 26 27 ··· 36 下一页
摘要: motivation 提高网络的一个有用的技巧就是增加训练数据: 真实数据, 或者用GAN拟合的数据. 这里想要研究的是, 噪声是否能够算作这类数据. 以CIFAR-10为例, 令 \[ f: x \in \mathcal{X} \rightarrow p \in \mathbb{R}^{11}, 阅读全文
posted @ 2021-06-05 16:14 馒头and花卷 阅读(207) 评论(0) 推荐(0) 编辑
摘要: Choi H. I. Lecture 4: Exponential family of distributions and generalized linear model (GLM). 定义 定义: 一个分布具有如下形式的密度函数: \[ f_{\theta}(x) = \frac{1}{Z(\t 阅读全文
posted @ 2021-06-05 15:55 馒头and花卷 阅读(86) 评论(0) 推荐(0) 编辑
摘要: Sufficient statistic - Wikipedia Sufficient statistic - arizona 定义 统计量是一些随机样本$X_1, X_2, \cdots, X_n$的函数 \[ T = r(X_1, X_2, \cdots, X_n). \] 样本$X$的分布$f 阅读全文
posted @ 2021-06-01 21:12 馒头and花卷 阅读(2076) 评论(0) 推荐(0) 编辑
摘要: Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural networks. In International Conference on Machine Learning (ICML), 2 阅读全文
posted @ 2021-05-30 19:18 馒头and花卷 阅读(419) 评论(0) 推荐(0) 编辑
摘要: Ng I., Fang Z., Zhu S., Chen Z. and Wang J. Masked Gradient-Based Causal Structure Learning. arXiv preprint arXiv:1911.10500, 2019. 概 非线性, 自动地学习因果图. 主 阅读全文
posted @ 2021-05-29 20:42 馒头and花卷 阅读(230) 评论(2) 推荐(0) 编辑
摘要: motivation BBN 对于处理长尾问题非常有效, 我在想, 能不能类似地用在鲁棒问题上. 思想很简单, 就是上面用干净数据, 下面用对抗样本(其用$\alpha=0.5$的eval mode 生成), 但是结果非常差. settings - batch_size: 128 - beta1: 阅读全文
posted @ 2021-05-27 21:25 馒头and花卷 阅读(965) 评论(0) 推荐(0) 编辑
摘要: DAGs with NO TEARS: Continuous Optimization for Structure Learning Zheng X., Aragam B., Ravikumar P. and Xing E. DAGs with NO TEARS: Continuous Optimi 阅读全文
posted @ 2021-05-27 20:32 馒头and花卷 阅读(1924) 评论(2) 推荐(0) 编辑
摘要: Jang E., Gu S. and Poole B. Categorical reparameterization with gumbel-softmax. In International Conference On Learning Representations (ICLR), 2017. 阅读全文
posted @ 2021-05-26 18:04 馒头and花卷 阅读(676) 评论(0) 推荐(0) 编辑
摘要: 概 感觉这个分布的含义很有用啊, 能预测‘最大', 也就是自然灾害, 太牛了. 主要内容 定义 [Gumbel distribution-wiki](Gumbel distribution - Wikipedia) 其分布函数和概率密度函数分别为: \[ F(x; \mu, \beta) = e^{ 阅读全文
posted @ 2021-05-26 17:44 馒头and花卷 阅读(1398) 评论(0) 推荐(0) 编辑
摘要: Locatello F., Bauer S., Lucic M., R"{a}tsch G., Gelly S. Sch"{o}lkopf and Bachem Olivier. Challenging common assumptions in the unsupervised learning 阅读全文
posted @ 2021-05-23 21:15 馒头and花卷 阅读(259) 评论(0) 推荐(0) 编辑
摘要: 源 Exponential moving average (EMA) 是一个非常有用的trick, 起到加速训练的作用. 近来发现, 该技巧还可以用于提高网络鲁棒性(约1% ~ 2%). EMA的流程很简单, $f(\cdot;\theta)$是我们用于训练的网络, 则在每次迭代结束后进行: \[ 阅读全文
posted @ 2021-05-22 21:54 馒头and花卷 阅读(559) 评论(0) 推荐(0) 编辑
摘要: Ioffe S. and Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on M 阅读全文
posted @ 2021-05-13 16:35 馒头and花卷 阅读(64) 评论(0) 推荐(0) 编辑
摘要: Rosenbaum P. and Rubin D. The Central Role of the Propensity Score in Observational Studies For Causal Effects. Biometrika, 1983, 70(1): 41-55. Propen 阅读全文
posted @ 2021-05-08 19:58 馒头and花卷 阅读(234) 评论(0) 推荐(0) 编辑
摘要: Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chiang M. and Mittal P. Improving adversarial robustness using proxy Distributions. arXiv pre 阅读全文
posted @ 2021-05-05 12:00 馒头and花卷 阅读(127) 评论(0) 推荐(0) 编辑
摘要: > Prabhushankar M., Kwon G., Temel D. and AlRegib G. Contrastive explanation in neural networks. In 2020 IEEE International Conference on Image Proces 阅读全文
posted @ 2021-05-03 18:02 馒头and花卷 阅读(68) 评论(0) 推荐(0) 编辑
摘要: Gowal S., Dvijotham K., Stanforth R., Bunel R., Qin C., Uesato J., Arandjelovic R., Mann T. & Kohli P. Scalable verified training for provably robust 阅读全文
posted @ 2021-04-24 21:51 馒头and花卷 阅读(1486) 评论(1) 推荐(2) 编辑
摘要: Zhang H., Zhang Z., Odena A. and Lee H. CONSISTENCY REGULARIZATION FOR GENERATIVE ADVERSARIAL NETWORKS. ICLR, 2020. Zhao Z., Singh S., Lee H., Zhang Z 阅读全文
posted @ 2021-04-15 11:25 馒头and花卷 阅读(266) 评论(0) 推荐(0) 编辑
摘要: Zhao S., Liu Z., Lin J., Zhu J. and Han S. Differentiable Augmentation for Data-Efficient GAN Training. NIPS, 2020. Karras T., Aittala M., Hellsten J. 阅读全文
posted @ 2021-04-14 15:32 馒头and花卷 阅读(113) 评论(0) 推荐(0) 编辑
摘要: Zhou B., Khosla A., Lapedriza A., Oliva A. and Torralba A. Learning Deep Features for Discriminative Localization. CVPR, 2016. Selvaraju R., Das A., V 阅读全文
posted @ 2021-04-11 18:19 馒头and花卷 阅读(735) 评论(0) 推荐(0) 编辑
摘要: Niu Y., Tang K., Zhang H., Lu Z., Hua X. and Wen J. Counterfactual VQA: A Cause-Effect Look at Language Bias. CVPR, 2021. 概 利用因果分析消除VQA(Visual Questio 阅读全文
posted @ 2021-04-09 09:31 馒头and花卷 阅读(642) 评论(0) 推荐(0) 编辑
上一页 1 ··· 19 20 21 22 23 24 25 26 27 ··· 36 下一页