摘要:
Yang J., Chen C., Wang C. and Tsai M. HOP-Rec: high-order proximity for implicit recommendation. In ACM Conference on Recommender Systems (RecSys), 20 阅读全文
摘要:
van den Berg R. Kipf T. N. and Weling M. Graph convolutional matrix completion. In Proceedings of the ACM SIGKDD International Conference on Knowledge 阅读全文
摘要:
Cho J., Mall U., Bala K. and Hariharan B. PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering. In IEEE Conferenc 阅读全文
摘要:
Hamilton M., Zhang Z., Hariharan B., Snavely N., Freeman W. T. Unsupervised semantic segmentation by distilling feature correspondences. In Internatio 阅读全文
摘要:
Wang X., Zhang R., Sun Y. and Qi J. Doubly robust joint learning for recommendation on data missing not at random. In International Conference on Mach 阅读全文
摘要:
Schnabel T., Swaminathan A., Singh A., Chandak N., Joachims T. Recommendations as treatments: debiasing learning and evaluation. In International Conf 阅读全文
摘要:
Ge Y., Tan J., Zhu Y., Xia Y., Luo J., Liu S., Fu Z., Geng S., Li Z. and Zhang Y. Explainable fairness in recommendation. In International ACM SIGIR C 阅读全文
摘要:
Ge Y., Liu S., Gao R., Xian Y., Li Y., Zhao X., Pei C., Pei C., Sun F., Ge J., Ou W. and Zhang Y. Towards long-term fairness in recommendation. In ACM 阅读全文
摘要:
Celis L. E., Straszak D. and Vishnoi N. K. Ranking with fairness constraints. arXiv preprint arXiv:1704.06840, 2017. 概 本文讨论在一种'强硬'的 Fairness 约束下, 如何 ( 阅读全文
摘要:
Liang D., Krishnan R. G., Hoffman M. D. and Jebara T. Variational autoencoders for collaborative filtering. In International Conference on World Wide 阅读全文
摘要:
Suresh Harini. A framework for understanding sources of harm throughout the machine learning life cycle. arXiv preprint arXiv:1901.10002, 2019. 概 本文介绍 阅读全文
摘要:
目录概符号说明Structural Causal Models and the Causal HierarchyStructural Causal Model (SCM)Causal HierarchyLayer1-SeeingLayer2-DoingLayer3–Imagining例子Expres 阅读全文
摘要:
Song Y., Sohl-Dickstein J., Kingma D. P., Kumar A., Ermon S. and Poole B. Score-based generative modeling through stochastic differential equations. I 阅读全文
摘要:
Shen Y., Wu Y., Zhang Y., Shan C., Zhang J., Letaief K. B. and Li D. How powerful is graph convolution for recommendation? In ACM International Confer 阅读全文
摘要:
He X., Deng K., Wang X., Li Y., Zhang Y. and Wang M. LightGCN: simplifying and powering graph convolution network for recommendation. In International 阅读全文
摘要:
Zhu Z., Kim J. and Nguyen T. Fairness among new items in cold start recommender systems. In International ACM SIGIR Conference on Research and Develop 阅读全文
摘要:
Wei T., Feng F., Chen J., Wu Z., Yi J. and He X. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In ACM 阅读全文
摘要:
Zhang S., Yin H., Chen T., Huang Z., Cui L. and Zhang X. Graph embedding for recommendation against attribute inference attacks. In International Worl 阅读全文
摘要:
Wu C., Wu F., Qi T. and Huang Y. FairRec: fairness-aware news recommendation with decomposed adversarial learning. In AAAI Conference on Artificial In 阅读全文
摘要:
Naghiaei M., Rahmani H. A. and Deldjoo Y. CPFair: personalized consumer and producer fairness re-ranking for recommender systems. In International ACM 阅读全文