BBN+

motivation

观测用BBN的模式训练出来的模型, 配上不同的\(\alpha\), 结果会如何.

settings

Attribute Value
attack pgd-linf
batch_size 128
beta1 0.9
beta2 0.999
dataset cifar10
description AT=True-0.0=default-sgd-0.1=pgd-linf-0.0314-0.25-10=128=default
epochs 100
epsilon 0.03137254901960784
eva_alpha 0.0
learning_policy [50, 75] x 0.1
loss cross_entropy
lr 0.1
model resnet32
momentum 0.9
norm_cls True
optimizer sgd
progress False
resume False
seed 1
stats_log False
steps 10
stepsize 0.25
transform default
weight_decay 0.0005

results

Accuracy Robustness
parabolic decay image-20210607194311293 image-20210607194326116
fixed_alpha=0.5 image-20210608205833488 image-20210608205851736
fixed_alpha=0.5, 同时对抗样本也是采用alpha=0.5生成的 image-20210609155505329 image-20210609155521923

太奇怪了, 为啥会发生这种事情?

posted @ 2021-06-09 16:00  馒头and花卷  阅读(162)  评论(0编辑  收藏  举报