Categorical Reparameterization with Gumbel-Softmax
概
利用梯度反向传播训练网咯几乎是深度学习的不二法门, 但是这往往要求保证梯度的存在, 这在一定程度上限制了一些扩展. 比如在VAE中, 虽然当是一个正态分布的时候, 我们可以利用reparameterization来保证梯度存在, 即:
但是倘若中间变量是离散变量, 比如我们期望构建一个条件的VAE, 那么我们就没法用这种方式来解决了, 本文就提出了一个对离散分布的近似.
主要内容
Gumbel distribution
由gumbel distribution的性质可以知道, 从离散分布中采样等价于
又 可的一个连续逼近为softmax, 即
可以发现, 当比较小的时候, Gumbel-Softmax分布的期望和离散分布的期望是一致的, 采样的情况也是相同的, 我们可以选择一个较小的使得Gumbel-Softmax分布是离散分布的一个连续近似.
注: 作者偏爱先取一个较大的, 再退火至一个小的.
注: 作者在概率密度函数的推导过程中, 即公式(15)出有一个小错误, 应当是而非.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix