Consistency Regularization for GANs
概
让GAN训练稳定的方法主要有normalization 和 regularization.
这两篇文章介绍了 consistency regularization.
主要内容
如上图所示, 是augmentation,
CR-GAN的思路是, 希望彼此接近,
bCR-GAN在此基础上, 还希望也彼此接近.
zCR-GAN则是将直接作用在上:
- 彼此远离, 即增加多样性;
- 彼此靠近, 即生成的图片应该有共同的主体特征.
至于ICR-GAN, 是bCR和zCR的结合.
注: 如果是隐向量, 采取高斯噪声.
注: 远离和靠近的度量, 文中采用的是
分类:
GAN
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
2019-04-15 Robust Principal Component Analysis?(PCP)