ROC and AUC

ROC-wiki

AUC常常在文章中作为评价一个分类器优劣的指标, 却总是忘记其原由, 索性记上一笔.

TPR, FPR

首先理解TP, FP, FN, TN的概念, 下面是其对应的类型. 这里, P表示正样本, 而N表示负样本, 下表中的行为真实的标签, 列为预测的标签.

预测\真实 P N
P TP(True Positive) FP(False Positive)
N FN(False Negative) TN(True Negative)

\[\mathrm{TPR} := \frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}, \mathrm{FPR}:= \frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}, \]

即TPR表示正样本分类正确的概率, FPR表示负样本判断错误(即取伪)的概率.

问题是如何通过这俩个指标反映一个二分类器的优劣, 首先假设二分类器由下列方式定义:

\[f:\mathbb{R}^d \rightarrow \mathbb{R}, \quad c(x;T) = I(f(x)>T), \]

其中\(T\)便是阈值, 即超过一定的阈值判断其为正样本.

注: 其实此说法有瑕疵, 因为完全有可能选择超过一定的阈值判断其为负样本时分类器效果"更好", 但是这种争论没有多大意义, 逼近只需取\(f'(x)=-f(x)\)即可.

显示强调\(T\)的存在, 有\(\mathrm{TPR}(T)\)\(\mathrm{FPR}(T)\), 另外, 此时\(f\)可以看成一个随机变量, 不妨令\(Y_+\)表示\(f\)的输入\(X\)为正样本时的随机变量, \(Y_-\)表示\(f\)的输入\(X\)为负样本时的随机变量, 则

\[\mathrm{TPR}(T)=P(Y_+>T) = \int_{T}^{\infty} p(y|+) \mathrm{d}y, \\ \mathrm{FPR}(T)=P(Y_->T) = \int_{T}^{\infty} p(y|-) \mathrm{d}y. \]

ROC and AUC

ROC曲线就是以\(y=\mathrm{TPR}(T)\), \(x=\mathrm{FPR}(T)\)的曲线, \(T\)在这里充当一个中间变量.
AUC就是ROC曲线下的面积, 其意义是概率\(P(Y_+>Y_-)\):

\[\begin{array}{ll} \mathrm{AUC} &= \int_0^1 y(x) \mathrm{d}x = \int_0^1 \mathrm{TPR}(\mathrm{FPR}^{-1}(x)) \mathrm{d}x \\ &= \int_{+\infty}^{-\infty} \mathrm{TPR}(T) \mathrm{FPR}'(T) \mathrm{d}T \\ &= \int_{+\infty}^{-\infty} \int_{T}^{\infty} p(y|+) \cdot(-p(T|-)) \mathrm{d}y \mathrm{d}T \\ &= \int_{-\infty}^{+\infty} p(T|-) \int_{T}^{\infty} p(y|+) \mathrm{d}y \mathrm{d}T \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} I(y>T)p(y|+) p(T|-) \mathrm{d}y \mathrm{d}T \\ &= P(Y_+ > Y_-). \end{array} \]

当然很自然的评价指标是, AUC距离0.5越远越好(这么说是因为AUC=0, 实际上只需\(f'(x)=-f(x)\)).

在这里插入图片描述

代码

sklearn-roc_curve

posted @ 2020-10-06 18:10  馒头and花卷  阅读(148)  评论(0编辑  收藏  举报