A Simple Framework for Contrastive Learning of Visual Representations

Chen T., Kornblith S., Norouzi M., Hinton G. A Simple Framework for Contrastive Learning of Visual Representations. arXiv: Learning, 2020.

@article{chen2020a,
title={A Simple Framework for Contrastive Learning of Visual Representations},
author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey E},
journal={arXiv: Learning},
year={2020}}

SimCLR 主要是利用augmentation来生成正负样本对, 虽然没有花里胡哨的结构, 但是通过细致的tricks比之前的方法更为有效.

主要内容

在这里插入图片描述

流程

流程是很简单的, 假设有一个batch的样本\(x\), 然后从augmentation\(\mathcal{T}\)中随机选取俩个\(t,t'\), 由此得到两批数据\(\tilde{x}_i=t(x), \tilde{x}_j=t'(x)\), 经过第一个encoder得到特征表示\(h_i,h_j\), 再经由一个非线性变化\(g\)得到\(z_i,z_j\)(注意这一步是和以往方法不同的点), 再由\(z_i, z_j\)生成正负样本对(对应同一个样本的俩个样本构成正样本对, 否则为负样本对).

在这里插入图片描述

接下来先介绍一些比较重要的特别的tricks, 再介绍别的.

projection head g

一般方法只有一个encoder \(f(\cdot)\), SimCLR多了一个projection head \(g(\cdot)\), 它把第一次提到的特征再进行一次过滤:

\[z_i = g(h_i)=W^{(2)} \sigma(W^{(1)}h_i), \]

其中\(\sigma\)为ReLU.

作者说, 这是为了过滤到由augmentation带来的额外的可分性, 让区分特征\(z\)变得更为困难从而学习到更好的特征\(h\).
注: 用于下游任务的特征是\(h\)而非\(z\)!

在这里插入图片描述

上表是将特征\(h\)或者\(z\)用于一个二分类任务, 区分输入是否经过了特定的augmentation, 结果显示\(h\)能够更好的分类, 意味着\(h\)\(z\)含有更多的augmentation的信息.

constractive loss

\[\tag{1} \ell_{ij}=-\log \frac{\exp(\mathrm{sim}(z_i,z_j)/\tau)}{\sum_{k\not=i} \exp(\mathrm{sim}(z_i,z_k)/\tau)}, \]

其中\(\mathrm{sim}(u,v)=u^Tv/\|u\|\|v\|\).

实验显示这个损失比别的都好用.
在这里插入图片描述

augmentation

在这里插入图片描述

SimCLR中augmentation是很重要的构造正负样本对的配件, 经过消融实验发现, 最有效的的是crop和color distortion.

在这里插入图片描述

另外, 实验还显示, 监督学习比起对比学习来讲, 对augmentation的依赖程度很低, 甚至可以说是不依赖.

other

  1. 大的模型充当encoder效果更好;
  2. 大的batch size 和 更多的 training epoches有助于学习到更好的特征表示;

代码

原文代码

posted @ 2020-09-28 20:24  馒头and花卷  阅读(1251)  评论(0编辑  收藏  举报