Product Integration

Richard D. Gill, Product integration

一般的积分是指黎曼积分, 其计算是把区域无限细分求和并取极限, 有另外一种积分是把区域无限细分求积并取极限, 这个在生存模型中有很多应用.

生存模型

设生存的时间为随机变量\(T\), 则生存函数定义为

\[S(t):= \mathrm{Pr} (T \ge t), \: t>0, \]

显然\(S(0)=1\). 生存函数表示, 一个个体生存时间超过\(t\)的概率.

连续情形

设随机变量\(T\)所对应的密度函数为\(f(t)\), 并定义hazard rate为

\[\alpha (t) := \mathop{\lim} \limits_{h \rightarrow 0} \frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h}, \]

注意到

\[\frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h}= \frac{\mathrm{Pr}(t\le T \le t+h)}{h \cdot \mathrm{Pr}(T\ge t)}, \]

\[\alpha(t)=f(t)/S(t). \]

\[f(t) =\frac{\mathrm{d}F(t)}{\mathrm{d}t} = \frac{\mathrm{d}(1-S(t))}{\mathrm{d}t}=-\frac{d}{dt}S(t)=:S'(t). \]

所以

\[\alpha(t)=-\frac{S'(t)}{S(t)}=-\frac{\mathrm{d}}{\mathrm{d}t} \log S(t), \]

\[S(t)=\exp \{ -\int_{0}^t \alpha(s) \mathrm{d}s\}, \: t>0. \]

离散情形

此时假设\(f(t)=\mathrm{Pr}(T=t)\),

\[\alpha(t):=\mathrm{Pr}(T=t|T\ge t)=f(t)/S(t), \]

可以证明

\[S(t)= \prod_0^t (1-\alpha(s)), \]

注意, 这里的\(\prod\)个人感觉都没法用极限去理解, 只能用无限(即便是不可数)个1相乘仍为1理解.

不妨设\(f(t)\)仅在\(0<t_1 < t_2 < \cdots\)处非零, 则

\[S(t)=1, \: t\le t_1, \\ S(t)=1-f(t_1)=1-\alpha(t_1), \: t_1 < t \le t_2, \\ \]

\[S(t)=1-f(t_1)-f(t_2)=1-\alpha(t_1)- \alpha(t_2)S(t_2)=(1-\alpha(t_1)(1-\alpha(t_2)), \: t_2 < t \le t_3 \\ \cdots \]

统一

记连续情况下

\[A(t) = \int_0^t \alpha(s) \mathrm{d}s \]

离散情况下

\[A(t) =\sum_0^t \alpha(s), \]

这里的\(\sum\)请用勒贝格积分理解, 二者在实变函数下统一为

\[A(t) = \int_0^t \frac{1}{S(s)} \mathrm{d}S(s). \]

\(A(t+h)-A(t)\)可以理解为个体在\([t,t+h]\)内死亡的概率, 则

\[S(t)= \lim_{\max |t_i - t_{i-1}| \rightarrow 0} \prod_0^t (1-(A(t_i)-A(t_{i-1}))=:\prod_0^t (1-dA(s)) \]

意思就是, 个体想活过\(t\), 必须前面的每一个阶段都是活着的(严格的推导, 以及极限存在等等不知).

还有在矩阵和马尔可夫上的推广, 一知半解, 就不记录了.

posted @ 2020-05-23 20:22  馒头and花卷  阅读(217)  评论(0编辑  收藏  举报