Entropy Search for Information-Efficient Global Optimization
@article{hennig2012entropy,
title={Entropy search for information-efficient global optimization},
author={Hennig, Philipp and Schuler, Christian J},
journal={Journal of Machine Learning Research},
volume={13},
number={1},
pages={1809--1837},
year={2012}}
概
贝叶斯优化中的 Entropy Search (EI) 方法.
主要内容
这篇文章关注的是
的问题, 且假设定义域\(I\)是有界的.
一般, 通过高斯过程定义\(f(x)\)的概率替代函数, 假设
在已经观测到\(X = \{x_1, \ldots, x_T\}\)以及\(Y = \{y_1, \ldots, y_T\}\)的基础上, 我们可以求得\(f(x^*)\)的后验分布为以
为均值和方差的正态分布.
我们的目的是在已有这些条件的基础上, 寻找下一个(或多个)评估点.
定义:
其中\(\theta(x) = 1, x\ge0, else \: 0\). \(\prod\)的部分在针对连续型的定义域时需要特别的定义. 显然(1)表示\(x\)为最小值点的概率.
再定义损失函数(当然损失函数不选择KL散度也是可以的, 但这是EI的名字的由来):
当我们选择\(b(x)\)为\(I\)上的均匀分布的时候, 当我们最小化\(\mathcal{L}\)的时候, \(p_{min}\)会趋向Dirac分布(即某个点处的概率密度为无穷, 其余为0, 显然, 该点我们有足够的信心认为其是\(f(x)\)的最小值点).
但是这样还不够, 我们进一步关心其期望损失(最小化):
通过最小化(3),我们可以获得接下来的评估点.
接下来的问题是如果去估计.
\(p_{min}\)的估计
比较麻烦的是\(\prod\)的部分, 策略是挑选\(N\)个点\(\tilde{x} = \{\tilde{x}_1, \ldots, \tilde{x}_N\}\). 一种是简单粗暴的网格的方式, 但是这种方式往往需要较大的\(N\), 另一种是给定一个测度\(u\), 根据已有的观察\((X, Y)\), 通过\(u(X, Y)\)采样\(\tilde{x}\). 一个好的\(u\)应该在使得令损失能够产生较大变化的区域多采样点, 针对本文的情况 应该在\(p_{min}\)值比较高的地方多采样点.
文中给了俩种方法, 一种直接的方法是\(p_{min}\)可以用蒙特卡洛积分去逼近,
一下是我猜想的用MC积分的方式(文中未给出具体的形式)"
- 根据一定策略选取\(\tilde{x}\);
- 重复J次:
- 根据概率\(p(f)\)采样\(f(\tilde{x}), f(x)\),
- 计算\(\prod\)部分
- 取平均
作者选择的是 Expectation Propagation (EP)的方法, 这种方法能够估计出\(\tilde{x}_i, i=1,\ldots,N\)处的概率\(q_{min}(\tilde{x_i})\): \(f_{min}\)存在于以\(\tilde{x}_i\)为"中心"的一定范围内(文中用step)的概率. 当\(N\)足够的的时候, 这个step正比于\((Nu(\tilde{x}_i))^{-1}\), 则:
这样我们就完成了\(p_{min}\)的估计, 一个更加好的性质是\(q_{min}\)关于\(\mu, \sigma_*\)的导数是有解析表达式的, 且\(Z_u\)是不必计算的(后续最小化过程中可以省略掉).
\(\mathcal{L}_{KL}\)的估计
其中\(\hat{p}_{min}=q_{min}\).
\(\langle \Delta \mathcal{L} \rangle\)
\(\arg \min_X \langle \mathcal{L} \rangle_X\) 用最小化一阶近似替代, 积分可以用MC积分逼近.
最后给出算法:
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
· 手把手教你更优雅的享受 DeepSeek
· AI工具推荐:领先的开源 AI 代码助手——Continue
· 探秘Transformer系列之(2)---总体架构
· V-Control:一个基于 .NET MAUI 的开箱即用的UI组件库
· 乌龟冬眠箱湿度监控系统和AI辅助建议功能的实现