FAST LOW-RANK APPROXIMATION FOR COVARIANCE MATRICES
Belabbas M A, Wolfe P J. Fast Low-Rank Approximation for Covariance Matrices[C]. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007: 293-296.
Nystorm method
和在WIKI看到的不是同一个东西?
假设\(G \in \mathbb{R}^{n \times n}\)为对称正定矩阵。
其中\(A \in \mathbb{R}^{k \times k}, k<n\)。
假设\(G = U \Lambda U^T\),\(A = U_A \Lambda_A U_A^T\),令
则:
易得:
再玩一下,令:
且\(M = U_M \Lambda_M U_M^T\).
再令
则:
这个阵型还蛮酷的。
低秩逼近
先来介绍一个性质:\(F(F^TF)^{-1/2}\)列正交(当然\(F^TF\)得可逆)。
实际上,如果\(F^TF = V\Lambda V^T\),那么\(FV_k \Lambda_k^{-1/2}\)列正交。
所以,我们可以让\(F\)的列为\(G\)中某些列的组合,再让\(P_k := FV_k \Lambda_k^{-1/2}\),最后:
来作为\(G\)的一个近似。
矩阵乘法的逼近
如果我们能够令\(\|GG^T-FF^T\|\)尽可能小,那么\(P_kP_k^TG\)就越有可能成为一个好的逼近,这需要利用矩阵乘法的逼近。
对于矩阵\(A \in \mathbb{R}^{m \times n}\)和\(B \in \mathbb{R}^{n \times p}\),得:
其中\(A_i\)为\(A\)的第i列,\(B^i\)为\(B\)的第i行。
论文举了一个例子:
如果\(n=2\),且\(A_2 = \sqrt{\alpha} A_1\),\(B=A^T\),
那么\(AB = (1+\alpha)A_1A_1^T\)。这意味着,我们只需通过\(A\)的第一列就能恢复\(AB\)。
所以接下来的问题是:
- 如何选择行或者列
- 如何调整它们的大小(乘个系数)
作者说,有一个神谕说列和行应该为\(S \subset \{1, \ldots, n\}\),不失一般性,假设其为\(S = \{1, \ldots, k\}\)。下面的定理给出了权重的选择:
所以我们要挑选\(S\),使得\(Z\)的对角线元素尽可能小,这意味着,我们要挑选这样的\(S\),使得\(<A_i, A_i><B^i, B^i>\)最大。
于是有了下面的俩个算法,分别针对矩阵乘法和矩阵逼近的: