一些矩阵范数的subgradients
《Subgradients》
Subderivate-wiki
Subgradient method-wiki
《Subgradient method》
Subgradient-Prof.S.Boyd,EE364b,StanfordUniversity
《Characterization of the Subdifferential of Some Matrix Norms 》
这篇文章主要参考:
《Characterization of the Subdifferential of Some Matrix Norms 》
引
矩阵\(A \in \mathbb{R}^{m\times n}\),\(\|\cdot\|\)为矩阵范数,注意这里我们并没有限定为何种范数。那么\(\|A\|\)的次梯度可以用下式表示:
这个定义和之前提到的定义是相一致的,事实上,\(\mathrm{trace}(A^TB)\)就相当于将\(A\)和\(B\)拉成俩个长向量作内积,比较实质就是对应元素相乘再相加。
\(G \in \partial \|A\|\)等价于:
在我看的书里面,对偶范数一般用\(\|\cdot\|_*\)表示,且是如此定义的:
因为下面还有很多地方是采取截图的形式展示的,所以还是沿袭论文的符号比较好,这里只是简单提一下。
至于为什么等价,论文里面没有提,我只能证明,满足那俩点条件的\(G\)是\(\|A\|\)的次梯度,而不能证明所有次梯度都满足那俩个条件。
证明如下:
假设\(G\)满足上面的条件,那么:
又
所以
所以\(G \in \partial \|A\|\)'
不好意思,我想到怎么证明啦!下证,\(G \in \partial \|A\|\)必定满足上述的条件,我们先说明范数的一些性质:
齐次:\(\|tA\|=|t|\|A\|\)
三角不等式:\(\|A+B\| \le \|A\|+\|B\|\)
既然对所有\(B \in \mathbb{R}^{m \times n}\)成立:
令\(B=1/2A\),可得:
又
所以:
到此第一个条件得证。
又:
第二个条件也得证。漂亮!
正交不变范数
正交不变范数定义如下:
其中\(U,V\)为任意正交矩阵(原文是\(\|UVA\|=\|A\|\),我认为是作者的笔误)。
注意,如果范数\(\|\cdot\|\)是正交不变的,那么其对偶范数同样是正交不变的,证明如下:
既然:
令\(UXV\)替代\(X\)代入即可得:
最后第二个等式成立根据迹的性质和\(\|\cdot\|\)的题设。
我们假设矩阵\(A\)的SVD分解为:
其中\(\Sigma \in \mathbb{R}^{m \times n}\)为对角矩阵(那种歪歪的对角矩阵),\(U\)和\(V\)的列我们用\(u_i,v_i\)来表示。
假设其奇异值:
降序排列。
所有这样的(正交不变?)范数都能用下式来定义:
其中\(\sigma = (\sigma_1, \ldots, \sigma_n)^T\),\(\phi\)是一个对称规范函数(symmetirc gague function),满足:
上面这个东西我也证明不了,不过至少谱范数和核函数的确是这样的。
\(\phi\)的对偶可以用下式来表示:
而且其次梯度更矩阵范数又有相似的一个性质:
证明是类似的,不多赘述。
一种常见的正交不变范数可由下式定义:
比较经典的,\(p=1\)对应核范数,\(p=2\)对应F范数,\(p=\infty\)对应谱范数。
定理1
证明如下:
这一部分的证明需要注意,不要把\(A\)当成题目中的\(A\),当成\(A+rR\)可能更容易理解。
这部分的证明,主要是得出了\(\sigma_i(\gamma)\)的一个泰勒展开,要想证明这个式子成立,可以利用上面的公式,也可以这么想。\(\sigma_i(\gamma)\)是\(A+\gamma R\)的第\(i\)个奇异值:
即为:
所以左边这项等于0?
下面的证明中,第一个不等式成立的原因是:
又\(\sigma(\gamma)^T\mathrm{d}(r)=\phi(\sigma(r))\)
类似地,我们就可以得到下面的分析:
有一点点小问题是,没有体现出\(\max\)的,不过从(2.5)看,因为这个不等式是对所有\(\mathrm{d}\in \partial \phi(\sigma)\)都成立的,所以结果成立。怎么说呢,这个有点像是上确界的东西。
我们定义符号\(\mathrm{conv} \{\cdot \}\),表示集合的凸包。
定理2
注意,我们的最终目的是找到\(\partial \|A\|\)利用前面的铺垫我们可以得到定理2:
相当有趣的一个东西。
下面是证明:
证明总的是分俩大部分来证明的,首先得证明\(G \in \mathrm{conv} \{S(A)\}\)满足上面的俩个条件,即是次梯度,再证明,不存在一个次梯度不属于\(\mathrm{conv} \{S(A)\}\)。
其实下面这部分的证明,我觉得用\(A = U_i\Sigma_i V_i^T\)表示比较好,作者的意思应该是奇异值分解可以用不同的序,毕竟我们不能要求凸包中的元素有合适的序。
下面这部分的证明,感觉没什么好讲的。
下面这部分证明,打问号的地方我有疑惑,以为我觉得只能知道\(\phi^*(\mathrm{d}_i)\le 1\),而且在这个条件下,证明依旧。好吧,我明白了,因为:\(\phi^*(\mathrm{d}_i)=\max \limits_{\phi(x)=1}\mathrm{d}_i^Tx\),又\(\mathrm{d}_i \in \phi(\sigma)\),所以只需令\(x=\sigma/|\phi(\sigma)\)即可得\(\phi^*(\mathrm{d}_i)=1\)。
到此,俩个条件满足,第一部分证毕。
第二部分用到了一个理论,我没有去查阅。这部分证明的思想是,即便存在这么一个\(G\)不属于\(\mathrm{conv}S(A)\),\(G\)依旧得满足\(\mathrm{trace}(R^TG) \le \max \limits_{\mathrm{d \in \partial \phi(\sigma)}} \sum \limits_{t=1}^n d_i u_i^TRv_i\)(要知道,后面这个部分是类似右导数的存在!!!),这个的原理是一种极限的思想,不好表述,但是真的真的蛮容易证明的。
例子:谱范数
凸包,凸包,切记切记。
例子:核范数
上面倒数第二行那个式子成立,要注意\(\sum_i \lambda_i =1\)这个条件。
注意:这里出现\(Y,Z\)的原因是\(U^{(2)},V^{(2)}\)对应的奇异值为0,所以其顺序是任意的,并没有对应一说。
算子范数
让\(\|\cdot\|_A\)和\(\|\cdot\|_B\)分别表示定义在\(\mathbb{R}^m\)和\(\mathbb{R}^n\)上的范数,那么对于矩阵\(A \in \mathbb{R}^{m \times n}\)上的算子范数,可以如下定义:
注意,矩阵范数,向量范数都满足引里的那个等价条件(实际上,只需满足正定性和三角不等式即可,就能推出那个等价条件)。
定义\(\Phi(A)\):
定理3
类似的,我们有定理3:
这部分的推导是类似的:
下面这部分和之前的是不同的,这么大费周章,就是为了证明最后收敛的结果在\(\Phi(A)\)中,之间没有这部分的证明,是因为凸函数次梯度的集合是闭凸的?
定理4
这个定理,就是为了导出\(\|A\|\)的次梯度。
这部分首先利用迹的性质,再利用\(Av_i=\|A\|u_i\)
\(w_i^TRv_i \le \|R\|\)的原因是\(\|w_i\|_A^* \le1\),
又\(\frac{\|Rv_i\|_A}{\|R\|}=\frac{\|Rv_i\|_A}{\max \limits_{\|v\|\_B=1} \|Rv\|_A}\le1\)(至少\(\|Rv_i\|_A=1\)),所以有上面的结果。
到此,我们证明了,\(S(A)\)中的元素均为次梯度,下证凡是次梯度,必属于\(S(A)\)。
这部分证明没有需要特别说明的。