随笔分类 - Recommender Systems
摘要:目录概统计角度论证实验论证代码 Woolridge D., Wilner S. and Glick M. An analysis of sequential recommendation datasets. PERSPECTIVES, 2021. Harper F. M. and Konstan J
阅读全文
摘要:目录概符号/缩写说明Training detailsDatasetsE2E 下 MoRec 是否优于 IDRec?Regular settingWarm setting越好的 encoder 带来越好的推荐效果?TS versus E2E?总结代码 Yuan Z., Yuan F., Song Y.
阅读全文
摘要:目录概符号说明Softmax lossBilateral Softmax loss (BSL)代码 Wu J., Chen J., Wu J., Shi W., Zhang J. and Wang X. BSL: Understanding and Improving Softmax Loss fo
阅读全文
摘要:目录概符号说明DualGCN代码 Wang Q., Wei Y., Yin J., Wu J., Song X. and Nie L. DualGNN: Dual graph neural network for multimedia recommendation. IEEE Transaction
阅读全文
摘要:目录概符号说明MGCNMotivationBehavior-Guided PurifierMulti-View Information EncoderBehavior-Aware FuserPredicitonOptimation代码 Yu P., Tan Z., Lu G. and Bao B.
阅读全文
摘要:目录概FREEDOMMotivationFrozen Item-Item graphDenoising User-Item Bipartite GraphTwo Graphs for Learning代码 Zhou X. and Shen Z. A tale of two graphs: Freez
阅读全文
摘要:目录概符号说明LATTICEModality-aware Latent Structure LearningCombining with Collaborative Filtering代码 Zhang J., Zhu Y., Liu Q., Wu S., Wang S. and wang L. Mi
阅读全文
摘要:目录概符号说明KGATEmbedding LayerAttentive Embedding Propagation Layers代码 Wang X., He X., Cao Y., Liu M. and Chua T. KGAT: Knowledge graph attention network
阅读全文
摘要:目录概符号说明MotivationLTGNN代码 Zhang J., Xue R., Fan W., Xu X., Li Q., Pei J. and Liu X. Linear-time graph neural networks for scalable recommendations. WWW
阅读全文
摘要:目录概符号说明MMGCN代码 Wei Y., Wang X., Nie L., He X., Hong R. and Chua T. MMGCN: Multi-modal graph convolution network for personalized recommendation of mic
阅读全文
摘要:目录概InstructRecInstruction Generation Zhang J., Xie R., Hou Y., Zhao W. X., Lin L., Wen J. Recommendation as instruction following: a large language mo
阅读全文
摘要:[TOC] Guo J., Du L, Chen X., Ma X., Fu Q., Han S., Zhang D. and Zhang Y. On manipulating signals of user-item graph: A jacobi polynomial-based graph c
阅读全文
摘要:目录概TallRec代码 Bao K., Zhang J., Zhang Y., Wang W., Feng F. and He X. TALLRec: An effective and efficient tuning framework to align large language model
阅读全文
摘要:目录概符号说明Pixie Eksombatchai C., Jindal P., Liu J. Z., Liu Y., Sharma R., Sugnet C., Ulrich M. and Leskovec J. Pixie: A system for recommending 3+ billio
阅读全文
摘要:目录概TGINMotivation: Triangle 的重要性Model代码 Jiang W., Jiao Y., Wang Q., Liang C., Guo L., Zhang Y., Sun Z., Xiong Y. and Zhu Y. Triangle graph interest ne
阅读全文
摘要:目录概DG-ENN Guo W., Su R., Tan R., Guo H., Zhang Y., Liu Z., Tang R. and He X. Dual graph enhanced embedding neural network for ctr prediction. KDD, 202
阅读全文
摘要:目录概Fi-GNN代码 Li Z., Cui Z., Wu S., Zhang X. and Wang L. Fi-GNN: Modeling feature interactions via graph neural networks for ctr prediction. CIKM, 2019.
阅读全文
摘要:目录概符号说明SimRecPrediction-Level DistillationEmbedding-level DistillationAdaptive Contrastive Regularization总的损失代码 Xia L., Huang C., Shi J. and Xu Y. Gra
阅读全文
摘要:目录概UnKD代码 Chen G., Chen J., Feng F., Zhou S. and He X. Unbiased knowledge distillation for recommendation. WSDM, 2023. 概 考虑流行度偏差的知识蒸馏, 应用于推荐系统. UnKD M
阅读全文
摘要:目录概DE-RRDDistillation Experts (DE)Relaxed Ranking Distillation (RRD)代码 Kang S., Hwang J., Kweon W. and Yu H. DE-RRD: A knowledge distillation framewor
阅读全文